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Abstract—Recently, ridesharing services have grown rapidly.
In future, fleets of shared and pooled autonomous vehicles
may transform urban mobility. In this paper, we introduce an
approach to dynamically simulate these services within a full-
stack transport simulation using an insertion-based algorithm. In
a first test case, using a taxi data set from Berlin, the potential for
shared rides is evaluated using a fleet of vehicles with a capacity
between two and four ride requests. The simulation suggests that
the overall vehicle kilometers traveled may be reduced by 15—
20 % , while travel time increases can be kept at a relatively
low level of less than three minutes per person. Additionally, the
simulation results suggest in which areas of the city it may be
the most rewarding to offer shared services.

I. INTRODUCTION

In recent years, taxi and taxi-like limousine services have
undergone a digital disruption: From radio-based dispatch
systems and street hailing towards smartphone-based ordering
and dispatch. In the foreseeable future, shared autonomous
vehicles (SAVs) may even turn driverless taxi services into a
flexible, on-demand mass-transport system. In this context, the
question whether trips could be shared among passengers is
often raised. This dynamic ridesharing could not only reduce
the stress on such systems during peak hours, but also help
to reduce the overall impact on the road network and the
city in general. In an SAV context, shared rides may mitigate
effects of growing traffic that is often feared [1]. In this paper
we introduce an open source simulation system that may be
used to simulate shared rides in taxi-like or other demand-
responsive transport (DRT) systems and, as a first use case,
apply it to a real-world taxi dataset for Berlin, Germany. To
the best knowledge of the authors, similar studies have not
been published in this study area.

In the following section, a brief overview of shared taxi
services and their scientific interpretation will be given. This
is followed by a description of the simulation software and
algorithms used. Finally, the results of our case study will be
presented.

II. STATE OF THE ART AND RELATED WORK

Ridesharing (or tripsharing), where multiple passengers
share a taxi or limousine at the same time, is nothing new.
Systems for shared rides, operating as jitney or taxi services,

have been operating for decades in countries all over the world.
Usually, there is either a common origin or destination of the
vehicle, or both, and maybe even a fixed route [2, ch. 2].

More recently, app-based dynamic ridesharing services
started rolling out pooled services. Both Uber and Lyft, as
the most known providers, offer these, naming them uberPool
and Lyft Line respectively [3], [4]. When ordering, customers
are provided with an arrival time prediction and fixed fare for
both pooled and non-pooled options. Depending on a predicted
likelihood of sharing a ride with another customer, the price
may be significantly lower if choosing the pooled option. Both
systems require their users to submit the destination upon
ordering a vehicle. In science, ridesharing has been looked at
from different perspectives. A formal definition of a spectrum
of dynamic ridesharing problems, including their categoriza-
tion, and an outline of related optimization challenges can
be found in [5]. Especially, with regard to classical car trips
and carpooling, simulation results show potentials, but also
limitations of these services [6], [7], with one main problem
being the right timing for both drivers and passengers. A more
recent study has introduced a framework and mathematical
model for sharing rides. Their study concludes that the demand
currently served by 14 000 yellow taxis in New York City
could be replaced by 2 000 ten-seat minibuses, with most
passengers being served [8]. The potential of shared taxi rides
has also been addressed for Singapore [9]. The algorithm
used for matching passengers is based on partitioning the
road network and matching customers possibly traveling in
a similar sub-set of partitions. The results suggest a sharing
potential between 15 and 20%, when keeping the detour per
customer below 5 minutes. Similar values have also be found
for a simulation study in Tokyo’s suburbs . Most notably,
none of the studies above takes the willingness to share a
ride of passengers into account. This may be further reduced
by additional walks to main streets or collection points, which
for instance Uber suggests to its customers. One study has
included a mode choice model between non-pooled and pooled
option, however, the pooling algorithm is rather simple and
both origins and destinations of customers need to be in close
distance to each other [10].



III. METHODOLOGY

In order to simulate dynamic ridesharing trips, an existing
simulation framework is extended which so far has been
mainly used for simulation of non-shared taxi trips. Also a set
of performance criteria for shared trips needs to be defined in
order to evaluate different simulation outcomes.

A. Simulation framework

In this study, MATSim [11] is used as the simulation
software. Its basic concept is the simulation of agents and
their daily plans that consists of activities (such as home or
work) and trips in between these activity locations. These may
be of varying modes, including car, public transport or taxi. At
the end of a day, each executed plan is scored depending on
its performance and may be altered before the next iteration.
MATSim uses a fast queue-based model to simulate traffic
flow, which is detailed enough for most transport-related
questions. The software is open-source, written in JAVA and
capable of handling millions of agents.

For simulation of on-demand transport modes, such as taxi,
DRT or SAVs, a set of MATSim extensions have been created
[12], [13]. These allow dynamic dispatching of vehicle fleets
during simulation in response to incoming requests and other
events by means of pluggable algorithms that differ in terms of
objectives and constraints. This way, different aspects of real-
life taxi and ridesharing operations, as well as applications for
SAVs have been simulated for many urban areas [10], [14]-
[17].

B. Model

In order to dispatch customers in a shared taxi system,
we assume the following prerequisites which are taken from
various real-life applications.

Let N = 1,...,n be the set of immediate requests (pre-
booking is not allowed). Taxi request » € N is submitted at
the moment of departure 727 and specifies the exact pickup
and dropoff locations (door-to-door service). The amount of
time the customer is willing to wait for departure (i.e. waiting
and boarding) is fixed to t“?. The overall time spent on
traveling (waiting, boarding and riding) must not exceed ¢, =
atdireet 1 3 where t47¢°t is the direct ride time between the
origin and destination of request ¢, while « > 1 and § >
0 are used to model the maximal amount of time loss due
to waiting, boarding and possible detours. A request can be
rejected (e.g. due to constraints violation) only immediately
after submission. Once scheduled, the request is guaranteed
to be served (i.e. cannot be rejected later) even if there are
delays on the way causing violation of some constraints.

Let M =1,...,m be the set of shared taxis. Initially, each
vehicle £ € M has a capacity cg, current location [; and
time window [ay,bx), in which it may operate. Vehicles are
managed by a central dispatch system that is responsible for
scheduling or rejecting incoming requests. Each vehicle has a
route that leads through a sequence of stops S, = (1, ..., sg).
Two sets of requests: pickups Py; and dropoffs Dy, are defined
for all stops ¢ € Si on the route of vehicle k£ € M. At least

one passenger gets in or out at each stop, i.e. |Py;| + |Dgi| >
0,Vk € M,i € S. Each stop is of a fixed duration ¢5°P,
Arrival at the last stop, sg, must be scheduled at latest for time
by, —t5t°P, so that the time window is not violated. The capacity
of a vehicle cannot be exceeded when driving between stops,
ie. og < ¢, Vk € M,i € Sk, where o; is the occupancy
of vehicle k£ on the way to stop ¢ and is defined recursively
backwards from the last stop:

Oks), — |Dksk|a
Vke M,i € S, — {Sk}.

Vehicles are monitored as they move and their location is
being updated. On arrival at a stop, the stop is removed from
the route. Boarding and alighting are modeled in a simplified
way: All the passengers who have reached their destination
get out immediately at the beginning of the stop, while new
passengers get in at its end. Insertion of a stop at the first
position in the route results in an immediate diversion of a
vehicle towards that location. After all scheduled stops have
been visited, the list of stops is empty and the vehicle remains
idle until a new dispatch or the end of its time window.
Cruising and/or relocation of idle vehicles is possible in the
implemented model, though not analyzed in this study.

Oki = Oki+1 — | Pri| + | Dyl

C. Routing algorithm

Shared taxis are dynamically routed using an insertion
heuristic that aims at minimizing the total taxi workload
measured as the total time spent on handling requests (i.e.
excluding idle time). Whenever a new request is submitted, the
algorithm searches the routes of all vehicles for optimal inser-
tions. A request insertion (k,4,7),k € M,i,7 € 0USg,i < j
means the request is inserted into k-th vehicle’s stop list at
position i+ 1 (pickup stop) and j + 1 (dropoff stop), assuming
the list elements are indexed from 1. If ¢ = j, the pickup
is followed directly by the dropoff. If a newly inserted stop
has the same location as either of the adjacent stops, both
stops are consolidated. By a feasible insertion we mean an
insertion that satisfies the following conditions: (i) the wait
and travel duration constraints are satisfied for both the new
and already inserted requests, (ii) the vehicle time window is
satisfied. All feasible insertions are evaluated by calculating
an increase of kth vehicle work time. The first insertion that
offers the smallest increase is selected. If no feasible insertion
exists, the request gets rejected.

During simulation, as in real life, vehicles may encounter
some delays while driving. This may lead to violation of some
wait and travel time constraints. This, however, impacts only
scheduling of new requests, while the already accepted ones
cannot be rejected or re-scheduled.

The sole use of insertion, without re-ordering of stops or
moving requests between vehicles, is justified by the tight
maximum waiting and travel time constraints and no pre-
booking. Although this heuristic algorithm does not guarantee
optimality, it offers good results (see comparison between non-
shared and shared taxi services in Section V) at a low com-
putational cost. For instance, the 24-hour city-wide simulation



runs presented in Section V took roughly 20 minutes on a
standard modern laptop with an Intel i7 core processor. This
allows its use for real-time dispatching of large fleets of shared
taxis.

D. Performance criteria

In both non-shared and shared taxi services, the average
customer wait (including boarding) time 7" and the 95th
percentile TyY, the average ride (i.e. on board or in-vehicle
travel) time 7%, the fleet-wide ratio of empty-to-total mileage
el, the rate of request rejection p are key performance
indicators.

In addition to that, the revenue kilometers dU per overall
driven distance dT, UP = dV / dT, is of relevance. This value
may be interpreted as an indicator for fleet utilization, with a
higher value indicating a higher vehicle occupancy. However,
it needs to be taken with care, since also extreme detours
result in a high utilization, as long as there are passengers on
board the vehicle. This may not be necessarily beneficial for
operators, who tend to charge flat fees based on direct trip
distances.

To accommodate for this, we introduce another fleet-wide
indicator which takes into account the overall driven distance
to the total mileage requested by customers:

dT
direct’
ZTGN dr

where d4¢t is the direct distance between the origin and
destination of request r.

For non-shared taxi, 1/A = 1 — el and thus )\ is always
greater than 1 as vehicles have empty drives between requests.
It can be 1 for a single-person private car trip, as long as no
detours are made, e.g. for parking search (which may account
to 20% of additional traffic in residential city areas [18]).

For shared rides, however, A < 1 is feasible and should be
targeted, especially when focusing on providing sustainable
transport services. This allows operators to claim their service
to be more efficient than private cars.

)\:

IV. TAXI TRAFFIC IN BERLIN AND BASE CASE
GENERATION

For a real-world demonstration, we are applying the pro-
posed shared taxi algorithm to a real-world dataset of taxi
requests in Berlin, which has been analyzed in [19] and
used in several simulation studies [14], [20]. It depicts a
typical workday (Tuesday) in 2013 and resembles the majority
requests of the taxi fleet handled by Taxi Berlin, the largest
local taxi dispatch company. An estimated 5 000 vehicles of
the city’s overall 8 000 vehicle fleet are (partly) dispatched
by them. The taxi business in Berlin is very fragmented,
with many small companies owning only one or two vehicles.
Monitored vehicle occupancy is rather low and in tendency
there is an oversupply of vehicles. Generally, vehicles are
busy handling customers for less than 30% of their time. The
demand for taxis is characterized by a strong morning peak and
a longer lasting afternoon peak. Demand at night times grows

Vehicle Occupancy

* idle
» empty ride

» 1lrequest

Fig. 1. Fleet occupancy of an unshared fleet

constantly during weekdays, with demand surging at Saturday
nights. This pattern is rather typical and can be observed
similarly in other cities around the globe [21]. Spatially, most
taxi trips either start or end within the inner city. The biggest
single origin and destination is Tegel Airport. There are first
attempts to offer shared taxi-like services in the city. These
currently have very limited operation times and areas.

For comparison purposes, a base case, where all vehicles are
non-shared, was also simulated. A total of 27 336 requests are
handled by 4 212 vehicles (all of them have different service
times). The simulation runs from 4 am to 4 am, because this
is the hour of smallest demand. On average, the waiting time
for a taxi is 4:32 minutes, and the mean waiting time 3:31
minutes. In the city center, the value is usually lower, whereas
it is considerably higher in suburban areas (which is reflected
by the 95th percentile of roughly 12 minutes). Fig. 1 shows
the vehicle occupancy over the day in stacked chart. According
to this figure, there is a maximum of 2 500 vehicles available
during the morning peak hour, of which only roughly one third
is busy serving requests. During other times, the number of
available vehicles is lower, though their occupancy remains
more or less at the same, low level. The average distance of
a trip is 7.6 km. This would translate into an average revenue
of 19 EUR per trip.

V. APPLICATION

In order to estimate the potential for shared taxi rides, we
assume that each customer ordering a vehicle is potentially
willing to share a ride. Obviously, this may work better for
some customers than for others, as some requests may already
serve a group of persons. However, we assume a big share of
requests consists of people traveling either alone or in a group
of two, so sharing a vehicle would be a theoretical option.
This is in line with real world sharing services, where requests
often may serve up to two customers. All vehicles have the
same capacity c that was set to 2, 3 or 4 in computational
experiments. Assuming a maximum of two passengers per
request, a capacity of 2 could be served by a standard-size
car, a capacity of 3 by a minivan, whereas, in order to
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Fig. 2. Comparison of overall travel times (wait + ride time)

serve 4 requests at the same time, a minibus is required.
The first two vehicle types are both commonly used in taxi
fleets, whereas minibuses are still rather uncommon. A further
capacity increase would require a bus driving license.

An overall of 180 simulation runs were conducted: 60 runs
per capacity (2, 3 or 4) with the maximum travel time defined
by « ranging between 1.1 and 2.1 and S between 0 and 1080
seconds. Furthermore, we set the maximum wait time t¥t
to 15 minutes. The duration of stop to pick up and/or drop
off passengers #5¢°P was assumed to be 60 seconds. All these
values were also used in the non-shared base case.

In order to achieve a high level of service for the shared taxi
service, we assume that the overall service quality indicators,
namely 7%, T3¥ and p, should not be worse than in the non-
shared one. Furthermore, only simulation runs where A < 1
were evaluated.

VI. RESULTS

Of the 180 simulation runs conducted, a majority can be
filtered out, because at least one of the criteria described in
the previous section was not fulfilled. An overall set of 24
simulation runs remain. Their key output indicators are listed
in Table I and discussed in the following sections.

A. Passenger statistics

The average waiting time for vehicles remains lower than
in the base case for all runs observed. This goes in line with
the expectations that a shared system has a higher number of
potential vehicles available to dispatch. For vehicle capacities
of 2 and 4, the combination of o = 1.7 and § = 120 s scores
the lowest waiting times, both in average and in the P95 value,
while for a capacity of 3, & = 1.5 and 5 = 240 s performs
slightly better.

While waiting times are one important factor, the overall
travel time, defined as the sum of wait and ride times, is just
as important. The values found to have the lowest wait times
also tend to score a low overall travel time, as depicted in
Fig. 2. For a capacity of 2, « = 1.7 and 8 = 120 s also score

the lowest average overall travel time in all valid solutions.
For higher capacities, the simulation indicates that the value
set of & = 1.5 and 8 = 240 s provides better results. Notably,
the average detour is also lower in this case. Together with
slightly higher average wait times, this indicates fewer shared
rides, which can also be observed in higher A values. For a
capacity of 2, the A < 1 criterion was not fulfilled for this set
of parameters and the solution was therefore not taken into
account. The rejection rate p is generally lower than in the
base case.

Overall, both parameter sets provide sufficiently good re-
sults for passengers. The decision which set to chose should
therefore depend mainly on the passenger’s evaluation of wait
vs. ride time. Literature suggests that waiting time for buses at
stops is generally more negatively evaluated than riding time
[22], but for taxi rides the opposite may apply.

B. Fleet usage

In all simulation runs evaluated, the vehicle kilometers
traveled d’ by the fleet is considerably lower than in the base
case. The actual savings vary between 15 and 22%, with less
rejected requests than in the base case.

Consequently, the A value is considerably lower than in the
non-shared base case for all scenario runs. With increasing
fleet capacity, A\ is generally lower. For all capacities, the
lowest A may be observed for simulations, where « values are
high. In these cases, the additional fixed [ is of a lower weight.
However, while these values may be preferable from an
operators perspective, they tend to create longer overall travel
times. This indicates once more the need for an operator to
weight out between passenger comfort and fleet performance.

The distances traveled by empty vehicles are considerably
lower in all policy cases.

C. Vehicle occupancy

Based on the overall vehicle kilometers traveled and the
A value, higher capacity vehicles may be favorable to use.
However, it needs to be weighed out, whether the usage of
high-capacity vehicles really pays off, since they generally
come along with higher fixed and variable operational costs.
As the values in Table I already suggest, the differences
between capacity 3 and 4 are not very high. As Fig. 3 reveals,
vehicles are occupied with two requests at the same time for
up to 50% of all the time they are busy and for roughly 10%
of the time with three requests on board. However, the chance
of carrying four requests at the same time are slim, mostly due
to tight time constraints, as the right part of the figure reveals.
This leads to the conclusion that vehicles do not require the
ability to serve four requests at the same time.

D. Network effects

In the current simulation model, shared taxi trips are offered
city-wide. However, taxi operations are focused towards the
city-center and Tegel airport. Fig. 4 shows the average occu-
pancy of taxis traveling on links in the network. It is generally
in the range of 1.0-1.5 in the city center or on ways leading
to and from the airport, whereas outside is often below 1.



TABLE I
SHARED TAXI STATISTICS FOR DIFFERENT VEHICLE CAPACITIES, o AND 8 VALUES. IF APPLICABLE, THE MOST FAVORABLE VALUES PER COLUMN AND
FLEET CAPACITY ARE INDICATED IN BOLD LETTERS

C «a B8 ™ ng TR Avg. | Avg. Avg. | p da’ eP av ub A
travel | direct | de-
dist. dist. tour
[s] [mm:ss] [mm:ss] [mm:ss] [km] [km] [km] [km] [km]
1 base case  04:32 | 11:51 | 15:08 | 7.58 7.58 0.00 0.04 233040 0.15 198899 0.85 1.17
2 1.7 | 120 | 04:00 | 10:54 | 18:36 | 8.82 7.65 1.17 0.04 197943 | 0.09 229542 1.16 0.99
2 1.7 | 240 | 04:19 | 11:34 | 19:04 | 8.92 7.54 1.39 0.02 198897 | 0.09 237885 1.2 0.99
2 1.9 | 120 | 04:20 | 11:54 | 19:29 | 9.07 7.59 1.48 0.03 197 333 | 0.09 239542 | 1.21 0.98
3 1.1 | 720 | 04:25 | 11:33 | 18:54 | 8.83 7.48 1.35 0.01 197 367 | 0.09 237664 | 1.2 0.98
3 1.3 | 480 | 04:09 | 10:39 | 18:33 | 8.74 7.50 1.24 0.02 197245| 0.09 234322 1.19 0.98
3 1.3 | 600 | 04:25 | 11:39 | 19:20 | 8.99 7.48 1.50 0.01 194775 | 0.09 241762 | 1.24 0.97
3 1.5 | 240 | 03:53 | 10:06 | 18:18 | 8.70 7.56 1.14 0.03 196232 | 0.09 229220 1.17 0.98
3 1.5 | 360 | 04:11 | 10:56 | 19:03 | 8.93 7.51 1.42 0.02 194995 | 0.09 239144 | 1.23 0.97
3 1.5 | 480 | 04:28 | 11:46 | 19:54 | 9.17 7.49 1.68 0.01 192620 | 0.08 246977 1.28 0.96
3 1.7 | 120 | 03:54 | 10:36 | 18:57 | 8.92 7.64 1.28 0.04 193122 | 0.09 232174 1.2 0.97
3 1.7 | 240 | 04:13 | 11:16 | 19:35 | 9.10 7.53 1.57 0.02 193081 | 0.09 242972 1.26 0.96
3 1.7 | 360 | 04:27 | 11:54 | 20:23 | 9.33 7.50 1.83 0.01 190 864 | 0.08 250674 | 1.31 0.95
3 1.9 | 120 | 04:14 | 11:31 | 20:13 | 9.31 7.58 1.74 0.03 191276 | 0.08 246509 | 1.29 0.95
4 1.1 | 720 | 04:21 | 11:28 | 18:54 | 8.85 7.48 1.37 0.01 196 180 | 0.09 238143 | 1.21 0.97
4 1.3 | 480 | 04:09 | 10:37 | 18:33 | 8.73 7.49 1.23 0.02 196 729 | 0.09 233954 | 1.19 0.98
4 1.3 | 600 | 04:25 | 11:40 | 19:26 | 9.03 7.48 1.55 0.01 194062 | 0.09 243265| 1.25 0.96
4 1.5 | 240 | 03:52 | 10:08 | 18:21 | 8.70 7.56 1.14 0.03 195764 | 0.09 229676 | 1.17 0.98
4 1.5 | 360 | 04:11 | 11:03 | 19:08 | 8.93 7.51 1.41 0.02 193402 | 0.09 238993 | 1.24 0.96
4 1.5 | 480 | 04:25 | 11:40 | 19:54 | 9.18 7.49 1.70 0.01 191094 | 0.08 247194 | 1.29 0.95
4 1.7 | 120 | 03:51 | 10:29 | 18:58 | 8.95 7.64 1.31 0.04 192988 | 0.09 233242 1.21 0.97
4 1.7 | 240 | 04:09 | 11:11 | 19:40 | 9.12 7.53 1.59 0.02 191723 | 0.08 243544 | 1.27 0.95
4 1.7 | 360 | 04:27 | 11:55 | 20:35 | 9.39 7.50 1.89 0.01 190 082 | 0.08 252603 | 1.33 0.94
4 1.9 | 120 | 04:09 | 11:29 | 20:11 | 9.31 7.57 1.73 0.03 189162 | 0.08 246340 1.3 0.94
a idle & lrequest 3 requests
& emptyride 2 requests 4 requests

Capacity =4

Fig. 3. Vehicle occupancy for capacities 3 (left) and 4 (right) with o« = 1.7 and 8 = 240 s

VII. CONCLUSION

In this paper we demonstrated the integration of shared
taxi services into a transport simulation based on insertion
heuristics. An application based on the taxi demand for Berlin
shows the potential of the proposed approach. An overall
reduction of vehicle kilometers traveled by taxi in the region
of 15-20% is feasible. The fine tuning of the algorithm
parameters demonstrates that sharing of rides will most likely
work best in areas of high overall taxi demand. Real-world
operators would therefore most likely limit shared operations
to these areas. Another obvious issue is the large number of
idle vehicles in the city, which is a real-life occurrence and
may reduce taxi drivers’ willingness to offer shared services.

Further research could focus on a simulation scenario with
autonomous vehicles, where a drop in prices could attract a
higher number of users all over the city. Also other usage
forms may be tried out, such as the gathering of people at
stops, rather than door-to-door operations or the combination
of DRT services with public transport. On the demand side,
choice modeling between shared and non-shared taxi options
should also looked at.

ADDITIONAL MATERIAL

Additional information about the software package used can
be found under http://matsim.org/extension/drt. The software
source code, including a runnable example script, is available
on https://github.com/matsim-org.
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