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Abstract. By raising the issue of data requirements for the purpose of modal development, validation and
application, this study proposes an approach to calibrate travel demand in heterogeneous traffic condition
using minimal empirical data. For this, a real-world scenario of Patna, India is chosen. For the calibration,
a Bayesian framework based calibration technique (Cadyts: Calibration of dynamic traffic assignment) is
used. Commonly available, mode-specific, hourly-classified traffic counts are used to generate full day
plans of agents and their initially unknown activity locations. While the proposed approach implements
location choice implicitly, the approach can be applied to a variety of other problems. Further, the effect of
household income is included in the utility function to filter out inconsistencies in the plans, which originate
from the survey data.

1 Introduction
In a transportation system, a wide variety of data (e.g., network data, socio-economic data) is required for
the purpose of model development, validation and application. The aim of such models is to simulate and
analyse travel demand and test the policies, which can help transport planners to understand the decision
making process of individual travellers. A model should be causal, flexible, transferable, efficient, and
sensitive to policy objectives [1]. Most travel demand models minimally require information about the
trip origin, trip destination, and trip mode. The information about origin and destination (OD) can come
in different forms and at different level of aggregation, e.g., as an OD matrix, as daily plans, etc. The
traditional way to estimate the OD matrix relies on roadsideor household surveys, which are, however,
error-prone and likely to be biased [2,3]. As an alternative, there are several approaches to estimate the OD
matrix using traffic counts (e.g., see [4–6]).
Given the origin-destination information of an area, static traffic assignment (STA) provides the traffic flow
on each highway for every time bin. Dynamic traffic assignment (DTA) is a generalisation of STA, which
provides time-dependent traffic flow on each highway segment [7]. From the development perspective,
DTA models can be classified in two categories, analytical and simulation-based models. The former are
often preferred for large urban agglomeration and for microscopic traffic flow characteristics [7, 8]. In the
context of the application of such models to large urban transportation networks, at least two problems
become apparent: a) microscopic modelling is computationally expensive and b) data requirements are
high. Mainly based on the underlying traffic flow model DTA models can be classified as physical-queue
models [9,10] and non-physical-queue models [7,11]. One such physical-queue model [12,13] is embedded
in the activity-based, multi-agent transport simulation framework MATSim [14]. Due to its simplicity, it is
able to handle large urban transportation networks [15] and still resembles to Newell’s simplified kinematic
wave model [16, 17]. The first problem mentioned above regarding the resource-intensive models can be
managed by such fast traffic flow models.
Traditionally, in order to gather the required data, different types of data collection techniques are used,
which are either manual or automatic. Such approaches include mid-block traffic count surveys, spot-speed
surveys, origin-destination surveys, household surveys etc. [18]. The use of mid-block traffic counts survey
is popular in India for various purposes. However, this information is not sufficient to simulate the travel
demand for an urban scenario in order to understand the behaviour of individual travellers. The complexity
rises if traffic streams are populated with different vehicle types, which is very common in most developing
economies. In this direction, this study proposes an approach to calibrate travel demand in heterogeneous
traffic conditions using minimal empirical data.
In contrast to traditional data collection techniques, several studies apply alternative approaches to derive
and validate travel demand. Detailed surveys to collect the data (e.g., household surveys), which require
origin and destination information, trip modes, trip purposes, start times, end times etc., are often associated
with high non-responses and misreporting rates [19, 20]. Traffic data collection based on manual or auto-
mated traffic counts is usually easier to manage. With the recent technological advances, new approaches
are presented , which make use of GPS (Geographical Positioning System) technology in traditional travel
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surveys, which is likely to improve the quality and robustness of the data [20–22]. Similarly, in the last
couple of years, several other studies proposed different approaches to collect data using CDR (call detail
records) from smartphones [23, 24]. A simulation-based approach to construct all-day trip chains using
mobile phone data is proposed by Zilske and Nagel [25], which reduces spatio-temporal uncertainties.
In this direction, this study proposes an approach to construct trip diaries in heterogeneous traffic conditions
using hourly classified mid-block traffic counts. For this, a real-world scenario of Patna, India, is considered.
The data for the scenario is taken from the Comprehensive Mobility Plan (CMP) for Patna [26]. A few
inconsistencies in the survey data are observed, which are likely to occur in other scenarios as well. Some
of these inconsistencies are repaired in the scenario. The remainder of the paper is structured as follows.
Sec. 2 illustrates the calibration process, Sec. 3 exhibits the travel demand for the scenario and construction
of an income-dependent utility function. Calibration results are presented and discussed in Sec. 4. The
study is concluded in the Sec. 5.

2 Calibration procedure
In this study, the multi-agent based transport simulation framework MATSim is used (see Sec. 2.1), which is
able to handle large-scale scenarios because of its fast network loading algorithm (see [27] for details) and
ability to handle mixed traffic conditions [28,29]. Together with this, the calibrator Cadyts (“Calibration of
dynamic traffic assignment”; see Sec. 2.2) is used. It has been used previously to adjust traffic demand of
car traffic [30, 31] and to calibrate the demand for public transit [32]. It has also been applied to solve the
problem of location choice [31], which was applied in the creation of an open scenario for Berlin [33]. In
these approaches, however, Cadyts was used for homogeneous traffic conditions, while the present study
extends the approach for heterogeneous traffic conditions.

2.1 Travel Simulator: MATSim

In this study, the MATSim transport simulation framework [14] is used for all simulation experiments.The
minimal inputs for a simulation run are the physical boundary conditions (i.e., the road network), daily
plans of individual travellers and scenario-specific parameters. MATSim is composed of an iterative cycle
in which every individual traveller is considered as an agent. The cycle consists of following three parts:
(1) Plans execution: In this step, the plans of all individual travellers are executed simultaneously on the
network using a mobility simulation. In this study, a time-step-based queue simulation approach [12, 34] is
used. This can also simulate heterogeneous traffic conditions [27–29]. (2) Plans evaluation: The executed
plans are evaluated using a utility (scoring) function. In this study, the default ‘Charypar-Nagel’ scoring
function [35] is used and further modified to include the effect of household income (see Sec. 3.2.2). (3) Re-
planning: A new plan is generated for some agents by modifying an existing plan’s attribute (departure time,
route, mode) using so-called innovative strategies. The old plans are kept in the agents’ memories and can
be selected by so-called non-innovative strategies later on. The new plan is executed in the next iteration.
The above steps are repeated in an iterative process. Innovation is used until a certain iteration. Finally,
a number of additional iterations are run only with non-innovative strategies enables (i.e., plan selection),
which finally results in stabilized simulation outputs.

2.2 Calibrator: Cadyts

In an activity-based simulation framework, traffic counts are insufficient to generate whole day plans of
individual travellers. To address this issue, a calibrator called “Cadyts” is used [36, 37], which is based
within a Bayesian framework. Together with simulation framework, this is integrated to the utility function
such that probability of selecting a plan i from the j plans is given by Eq. (1). In this, ylt and qlt are the
measurement and simulation values for spatial location l and time bin t. σ2

lt is variance of measurement. Vi
is the utility of the plan and ω is weight parameter for correction ∆Vlt (Eq. (2)).

P(i|y) = exp(Vi +ω ·∑lt ∆Vlt)

∑ j exp(Vi +ω ·∑lt ∆Vlt)
(1) ∆Vlt =

ylt −qlt

σ2
lt

(2)

In this study, hourly classified traffic counts are available, which are used to generate whole day plan for the
travellers. From the Eqs. (1) and (2), one can observe that a plan, in which, an agent traverses a link whose



simulated counts are underestimated, is more likely to be chosen. For heterogeneous traffic conditions,
Eq. (2) is modified as shown in Eq. (3); where m is the mode for which measured traffic counts at link l,
time bin t are available.

∆Vltm =
yltm−qltm

σ2
ltm

(3)

Revisiting Eqs. (1) and (3), it can be observed that, if the choice set of
an agent contains plans with different modes, the correction is likely to
fix the modal share as well. In this study, Cadyts is used to generate
full day plans of agents and its initially unknown activity locations.The
choices for the different activities are provided by creating multiple plans
corresponding to each plausible activity location (see Fig. 1). The approach can be applied to a variety of
problems.

3 Real-world case study: Patna, India

Figure 1: Patna road network, survey locations and land-use pattern.

This section exhibits the set-up for a real-world scenario of Patna, India. The road network, survey locations,
and the land-use patterns of Patna are shown in Fig. 1 [27].

3.1 Travel Demand

The travel demand of the region can be categorized in two groups, urban and external travel demand.
Urban travel demand Urban travel demand is generated directly from a trip diary survey [26]. Parts of
the data in the household survey were unavailable; for such cases the required data were imputed ran-
domly based on other available data in the Patna CMP. This results in 13,278 records. Every such record
is translated into one agent with one plan. In absence of other data, two trips for each plan are syntheti-
cally generated. In order to get significant number of plans for commuters and through traffic in various
categories, 10% sample is used. Therefore, urban plans are cloned and modified by randomizing activity
locations (origin, destination) within the zone and departure times.
External travel demand External travel demand is categorized in through traffic and commuters. The
former is the traffic which passes through Patna and consists in at most one trip per day, whereasthe latter
consists in agents who commute between Patna and nearbyareas. To include the congestion effect of exter-
nal traffic in the activity-based transport simulation framework, the whole day plans of the external traffic
are required. These are generated as follows.

1. The Patna CMP provides hourly classified counts for 7 outer cordon stations (see Fig. 1) in both
directions and directional split factors. The directional split provides the share of commuters and
through traffic from each counting station.

2. For through traffic, an OD matrix is given, which provides the origins and destinations.In absence of
separate factors, factors from the matrix are used for all modes (bicycle, car, motorbike and truck)



and in all time bins; this provides the mode and departure times for the trips. Consequently, a 10%
sample is created from the counts such that each plan has one trip only.

3. For commuters, exact locations of the trip destinations are initially unknown. They are calibrated in
this study based on the given traffic counts in a similar way as done by Ziemke et al. [31] for car
traffic. A few potential activity locations are identified based on the land-use pattern (see Fig. 1).
A random point inside any of these probable activity location areas is taken as the trip destination.
Thus, for every agent, 5 plans are generated corresponding to each plausible destination and added
to the choice set of the agent. From Eq. (1) recall that, a plan is favoured if the agent travels via
one of the counting station, which is underestimated in the simulation. In other words, within the
simulation framework, location choice is available to the agents.

3.2 Scenario preparation

The calibration of the scenario is performed for the following reasons. a) Trip destinations (activity lo-
cations) of the commuters are unknown. b) A few trip diaries do not have mode and income information
which is randomly assigned based on the modal distribution from Patna CMP [26]. c) A few trip diaries
are inconsistent (see Fig. 3a). For instance, a) persons from very low income group (8-11 USDct) make
trips by car, b) person from high income group make a 10 km long trips using bicycle or walk modes. Such
situations are very unlikely and assumed as reporting errors. d) The mode-specific utility parameters are
taken from other sources. Alternative (or mode) specific constants (ASCs) for all modes are unknown.

3.2.1 Travel modes

Table 1: Modal attributes for Patna scenario.

bicycle car motorbike truck PT walk

Speed (km/h) 15 60 60 30 20 5

PCU 0.15 1 0.15 3 – –

In this study, car, motorbike, bicy-
cle, and truck modes are physically
simulated on network (so called
main modes or congested modes),
whereas walk and public transit
(PT) are teleported between origin
and destination (so-called uncon-
gested modes). The main differ-
ence between the two is that main
modes consume flow and storage
capacities on the link and thus affect the route choice decision making process of the individual travellers.
Tab. 1 provides the maximum speeds for all modes and PCU for congested modes. In the traffic mix,
shares of bicycle and motorbike modes are high, therefore, the PCU of bicycle and motorbike is assumed
as 0.15 [38].

3.2.2 Utility function

Table 2: Values of time and vehicle operating costs [39].

travel vehicle operating value of time
mode costs (USDct/km) (USDct/h)

car 3.75 93.84

motorbike 1.55 48.05

PT – 59.31

Utility parameters: To evaluate a plan, a
scoring function is used which requires ex-
plicit values for utility parameters. In order
to determine the utility parameters, the value
of time and vehicle operating costs is taken
from [39] and converted to USD (1 USD ≈
66.6 INR on 8 June 2016) for a common in-
terpretation (see Tab. 2). The average trip cost
per km for PT is taken from [40] and shown
in Eq. (4). The value are on the lower side,
however, seems appropriate due to significant
share of low cost “tuk-tuks” in Patna.

PT trip costs =

{
0.045, if d ≤ 4 km
0.045+(d−4) ·0.0047, if d > 4 km

(4)

Dependency on household income: In general, the value of time is the opportunity cost of time an indi-



vidual traveller spends on the trip; this is highly dependent on the income level of individual. In order to
incorporate the high income differentiation across different modes, the perception of income is added to
behavioural decision making process of individual by modifying the utility function.

1. Utility of travelling: The utility of travelling is given by:

Strav,mode =Cmode +βtrav,mode · ttrav +(βd,mode +βm · γd,mode) ·dtrav (5)

where Cmode is ASC for mode mode, βtrav,mode is marginal utility of travelling (normally negative
or zero), βd,mode is marginal utility of distance (normally negative or zero), βm is marginal utility
of money and γd,mode is mode-specific monetary distance rate (normally negative or zero). ttrav and
dtrav is travel time and travel distance between two activity locations.

2. Marginal utility of travelling:

a) As is common (e.g., [41]), it is assumed that the income-dependent marginal utility of money
(βm, j) is indirectly proportional to the income: βm, j = ȳ/y j where ȳ is the median income for
all individuals, and y j is the income of individual j.

b) It is assumed that the (dis)utility of travelling by car (β̃trav,car) is the same for every individual
although car is predominantly used by persons with a higher income. Therefore, the value of
travel time saving for the car mode (VTTScar) is given by:

VTTScar
!
=
−β̃trav,car

βm,highIncome

βm,highIncome =
ȳ

yhighIncome

where yhighIncome is the median income for car users. Thus, the marginal utility of travelling
by car will become (VTTS values come from Tab. 2):

β̃trav,car = VTTScar ·
ȳ

yhighIncome
= 0.94 · 4000

20000
= 0.19

util
h

,

c) Similarly, for motorbike and PT, the marginal utility of travelling will be:

β̃trav,mb = 0.48 · 4000
6250

= 0.31
util
h

β̃trav,PT = 0.59 · 4000
4000

= 0.59
util
h

d) In absence of the values of time for bicycle and walk modes, (dis)utility (or disagreeability)
of being (stuck) in traffic for bicycle and walk mode is assumed same as motorbike; i.e.,
β̃trav,bicycle = β̃trav,walk = β̃trav,mb = 0.31 util/h

These values express that car is the most favourable of all available modes, and PT the least favourable.
The fact that the VTTS of car in Tab. 2 comes out as the one with the highest willingness-to-pay
to shorten its duration is explained by the higher income of car users, and not as a general inconve-
nience of car, which seems to be more plausible.

3. Utility of performing an activity: Considering the marginal utility of time as a resource, a unit
reduction in travel time (∆t) would not only save the direct (dis)utility of travel βtrav ·∆t but also
increase the score by the utility of time as a resource, which approximately is βdur ·∆t [42]. The
latter is the opportunity cost of time gained by performing the activities for the saved time (∆t). This
results in β̃trav,mode = βdur−βtrav,mode where the sign convention is such that the parameter βdur is
typically positive. Following [42], the explicit value of marginal utility of performing (or marginal
utility of activity duration) an activity (βdur) is taken as the lowest of marginal utility of travelling
for different modes (βdur = β̃trav,car = 0.19 util/h), and the corresponding direct marginal utility,
βtrav,car is set to zero. All other direct marginal utilities of travelling are set relative to this value,
i.e., βtrav,mode = 0.19 util/h− β̃trav,mode The resulting mode-specific marginal utilities of travelling
for MATSim scoring function are shown in Tab. 3.

Further, the ASCs for different modes are calibrated to capture the influence of variables not explicitly
included in the scoring function. Along with this, to include the physical effort in bicycle and walk mode,
the marginal utilities of distance for bicycle and walk, βd,bicycle and βd,walk, are also calibrated.



In absence of any relevant data utility parameters of bicycle, car, and motorbike from urban and external
traffic are assumed to be the same. For trucks, a different behavioural model is required, which is out of
the scope of this study. However, for the scenario completion and to include the congestion effects from
commercial vehicles, trucks are also included in the simulation with default utility parameters.

3.2.3 Simulation setup

Table 3: Utility parameters converted to MATSim format.

travel mode car motorbike PT bicycle walk

monetary distance rate (γd) −3.7· 10-5 −1.6· 10-5 Eq. (4) − −
marginal utility of travelling (βtrav) [util/h] −0.0 −0.12 −0.40 −0.12 −0.12

marginal utility of performing (βdur) [util/h] 0.19

The modal splits of the urban travellers from reference study and initial plans are shown in Tab. 5. In order
to replicate this modal split, mode choice is allowed for urban travellers and the ASCs are calibrated. The
calibration is performed over 200 iterations together with Cadyts in order to generate the synthetic plans
for the external demand (see Sec. 2.2) and find destinations for commuters. For the calibration process, the
maximum limit of plans in the choice set of an agent is set to 10. After calibrating with Cadyts, only the
best plans for each agent and in consequence only the destinations best matching the traffic counts are kept.
The simulation is then continued for another 1000 iterations to stabilize the urban and external demand in
absence of Cadyts.
Different so-called innovative modules are used for different sub-populations (urban and external). a) Ur-
ban: In a given iteration, 15% of the urban travellers are allowed to change their route, 10% are allowed to
change mode and 5% are allowed to mutate the departure time of the activity. The mutation of the departure
time of the activity is performed randomly between −2 to +2 h. The time mutation is turned off after
Cadyts calibration, i.e., the departure times of the urban travellers are then fixed. b) External: In a given
iteration, 15% of the agents from external traffic are allowed to change routes until innovation is turned off.
After 200 iterations, the origin-destination pairs of the external demand are fixed. Innovation is used until
80% of iteration (i.e., initially for 1-160 iterations and then 201-1000 iterations). The remaining agents
until 80% of the iterations and all agents afterwards chose a plan from their generated choice sets.

4 Calibration results

4.1 Calibrated utility parameters

Table 4: Calibrated utility parameters.

parameter bicycle car motorbike PT walk

ASC (util) 0.0 −0.6 −0.58 −0.545 0.0

βd,mode(q) (util/m) −0.00011 − − − −0.00012

The (manually) calibrated
ASCs for all modes and
marginal utility of dis-
tance for bicycle and
walk modes are shown
in Tab. 4. The ASCs
for bicycle and walk
modes are estimated to
zero, which can be in-
terpreted as no initial
impedance. Car/motorbike and PT often have some initial overhead either in terms of getting the car out of
the garage or in terms of walking to a In this scenario, walking to PT stop is marginally less burdensome
as getting the car/motorbike out of the garage/parking location. As a consequence of mode choice, the
share of walk mode increases (see Tab. 5), which can be controlled either by a negative ASC or by having
marginal utility of distance for walk mode (βd,walk). The former has less significance for the walk mode
and therefore the latter is chosen. In contrast to bicycle, the walk mode is teleported and thus the utility for
a person with walk mode is not affected by congestion. The marginal utility of distance for the walk mode



(βd,walk = −1.2 · 10-4 util/m) is estimated marginally higher than the marginal utility of distance for the
bicycle mode (βd,walk =−1.1 ·10-4 util/m). This means, for walking 1 km, an agent will loose 0.12 util. At
a speed of 5 km/h, it will take 12 min which could be used for performing an activity. Thus, the agent will
also loose 0.024 util (= βtrav,walk(q) ·0.2 h) for travelling and 0.038 util (= βdur ·0.2 h) opportunity cost of
time which could be used for performing an activity.

4.2 Modal split

Table 5: Modal splits for urban demand.

mode reference study initial urban after calibration
[26] plans from travel it.1200

diaries; it.0

bicycle 33% 29.0% 32.3%

car 2% 4.0% 2.7%

motorbike 14% 20.3% 14.7%

PT 22% 26.6% 21.7%

walk 29% 20.1% 28.6%

A comparison of the modal
splits at different stages is
shown in Tab. 5. It can be
observed that the modal share
for the walk mode is signif-
icantly different in the ref-
erence study and in the ini-
tial plans. The aim of the
calibration is to replicate the
modal shares from the ref-
erence study. Clearly, the
modal split after calibration
(column “it.1200” in Tab. 5)
has close resemblance with
the reference study.

4.3 Traffic counts
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Figure 2: Comparison of 24 h simulation and real traffic counts.

Fig. 2 shows the comparison
of average weekday real counts
and average weekday simula-
tion counts after 1200 itera-
tions. In the first step, Cadyts
pushes agents on the routes
by adding a correction fac-
tor (Eq. (2)) to the scoring
function such that the simula-
tion counts match the measured
counts. Afterwards, in absence
of the Cadyts correction factor,
the simulation counts become
higher than the real counts (see
Fig. 2), however, the calibration
results after 1200 iterations pro-
vide a good fit for modal split
and synthetic plans for external
traffic.

4.4 Income distance distribution

In order to understand the impact of the income-dependent scoring function for different modes, the income-
distance distribution is plotted in Fig. 3. The income attributes are taken from the initial trip diaries and trip
distances are the direct distances between origin and destination activities. The following observations are
made:

a) After the calibration, the car is restricted to high income groups. In contrast to the initial plans, in
the base case, the car is used for the longer distances.

b) PT is used mainly for longer distances (> 4km), whereas bicycle and walk modes are used for
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Figure 3: Income-dependent distance distributions for initial plans and calibrated plans. The x- and
y-axes depict the distance classes (in km) and number of trips respectively. The average income (in
USD) is shown at the top of each frame.

relatively shorter distances (< 6km). A few longer bicycle trips can also be observed for households
with a very low income.

c) To replicate the modal share from the reference study, the scenario is calibrated such that the share
of walk trips is about 8% higher after the calibration (see Tab. 5). A higher share of walk trips
(relatively shorter distance i.e., < 4km) can be noticed in the Fig. 3b. Additionally, the scoring
function forces the impractical longer (> 8km) walk trips to more plausible modes. A similar effect
is also observed for the longer bicycle trips from higher income groups.

Overall one can observe that several irregularities from the travel diaries are fixed in the calibrated plans
which is further suitable for policy testing.

5 Conclusions
This study addresses the difficulties in the model development and validation due to limited availability of
the data. The overall objective of the study was to estimate the alternative specific constants (ASCs) in
order to replicate the modal split in the reference study. In this direction, this study extended an approach
to generate full day activity plans in heterogeneous traffic conditions. To simulate travel demand, an agent-
based travel simulator was used, while for calibration, a Bayesian framework based calibration technique
was used. A real-world scenario of Patna was used for this purpose. Diverse income levels were included in
the utility function to filter out the errors in the survey data. In this approach, location choice was implicitly
implemented to identify the initially unknown destinations based on the land use pattern. The calibrated
ASCs show plausible values. With the help of income-based distance distributions, it was shown that the
calibrated plans are feasible plans and free from the errors originated from the survey. In future, the au-



thors wish to replace the manual calibration with an automatic calibration process using some optimization
techniques [43].
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