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Abstract

Cycling as an inexpensive, healthy, and efficient mode of transport for everyday

traveling is becoming increasingly popular. While many cities are promoting cy-

cling, it is rarely included in transport models and systematic policy evaluation

procedures. The purpose of this study is to extend the agent-based transport

simulation framework MATSim to be able to model bicycle traffic more realis-

tically. The network generation procedure is enriched to include attributes that

are relevant for cyclists (e.g. road surfaces, slopes). Travel speed computations,

plan scoring, and routing are enhanced to take into account these infrastructure

attributes. The scoring, i.e. the evaluation of simulated daily travel plans, is

furthermore enhanced to account for traffic events that emerge in the simulation

(e.g. passings by cars), which have an additional impact on cyclists’ decisions.

Inspired by an evolutionary computing perspective, a randomizing router was

implemented to enable cyclists to find realistic routes. It is discussed in detail

why this approach is both feasible in practical terms and also conceptually con-

sistent with MATSim’s co-evolutionary simulation approach. It is shown that

meaningful simulation results are obtained for an illustrative scenario, which

indicates that the developed methods will make real-world scenarios more re-

alistic in terms of the representation of bicycle traffic. Based on the exclusive

reliance on open data, the approach is spatially transferable.
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1. Introduction

Cycling as an inexpensive, fast, healthy, quiet, energy-efficient, limitedly

land-consuming, and enjoyable mode of transport for everyday travel is becom-

ing increasingly popular in many regions of the world [1, 2, 3, 4]. Aware of the

societal, environmental, economic, and public-health-related problems that mo-5

torized traffic has contributed to [5] and recognizing the benefits of cycling, cities

around the world are promoting the use of the bicycle for everyday travel [6].

The encouragement of cycling is increasingly included into plans for travel be-

havior change [1]. In Berlin, for instance, the current city-wide modal share of

cycling ranges at 13%, with increasing tendency [7]. At the same time, 64% of10

all trips in Berlin are shorter than 5km, which illustrates the vast growth poten-

tial that cycling still has [7]. Currently, a new mobility law (‘Mobilitätsgesetz’)

is scheduled to be passed whose aim is to make cycling, but also walking and

using public transport, safer and more comfortable1.

Next to other policies, the implementation of a good cycling infrastruc-15

ture appears to be an important prerequisite for fostering further growth in

cycling [3]. Many projects ranging from local additions of bicycle lanes and

improved intersection designs to ambitious larger-scale projects like the Rad-

schnellweg Ruhr, an about 100km-long bicycle highway that is sought to shift

parts of commuter traffic to bicycles in the Ruhr region in Germany2, or the20

Emscher-Weg, a large-scale conversion of former industry sites along the river

Emscher into a 100-km-long riverside bicycle route3 are currently discussed and

1 Cf. https://www.berlin.de/senuvk/verkehr/mobilitaetsgesetz/index_en.shtml, last

accessed on 16 June 2018.
2 Cf. http://www.rs1.ruhr, last accessed on 30 May 2018.
3 Cf. http://www.emscher-weg.de/route/emscher-weg/, last accessed on 24 June 2018.
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implemented. While some cities like Copenhagen or Amsterdam have been fore-

runners in promoting cycling, in many other places limited information about

the preferences of cyclists has been mentioned as obstacles to an effective in-25

vestments in bicycle infrastructure [6].

Transport models are recognized as an important tool to support the effective

planning of transport systems and as a means to evaluate proposed policies in

a structured and systematic fashion. While transport models are state-of-the-

practice in terms of motorized transport and public transport, this is not the30

case for the mode of cycling [3].

In this study, the agent-based transport simulation framework MATSim [8]

is used. The most simple way to include a mode of transport into a MATSim

transport simulation scenario is by ‘teleportation’. If a person (agent) choses

a ‘teleported’ mode in the simulation, they are simply relocated from their35

previous activity location to the next activity location without any network

interaction, but with a time delay that reflects real travel times. This approach

is usually only applied for modes that are included as alternatives to those

modes that are in the actual focus of analysis of a given scenario. Of course,

accuracy and, in particular, policy sensitivity of the teleportation approach are40

limited.

An improvement over the teleportation approach for modeling bicycle and

walk traffic was implemented by Dobler and Lämmel [9] who take into account

attributes of the person as well as link gradients to compute realistic travel

speeds for cyclists and pedestrians. Like for teleportation, their approach does,45

however, not contain an explicit simulation of the cycling agents on the network.

This is justified by the observation that congestion is rare for cyclists compared

to motorized traffic. As such, their approach does not allow for a simulation of

the interaction of different modes on the network like it is done in the present

study.50

In the current approach, by contrast, the movement of cyclists on the rep-

resentation of the physical network is explicitly simulated. To model bicycle

traffic realistically, various aspects of mobility that are relevant for cyclists are
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taken into account. This includes both aspects of the infrastructure as well

as the interaction of road users as it emerges in the transport system. In a55

preceding study [10], it has been shown how the routing module of MATSim

can be amended to observe cyclist-relevant properties of the infrastructure like

the existence of bicycle lanes or bicycle tracks as well as different road surface

types. The present paper builds on that work and extends it by also adjusting

MATSim’s scoring function. This is necessary to be able to run a simulation60

over multiple iterations, which, in turn, is necessary to be able to conduct policy

studies and to simulate the interaction of different road users on the network. In

fact, cycling agents might choose to avoid routes where they have experienced

a lot of motorized traffic, since the presence of cars tends to make cycling more

uncomfortable and potentially less safe, in particular if there is no dedicated cy-65

cling infrastructure [5, 11]. This study explains the incorporation of such events

into MATSim‘s scoring function in addition to the consideration of additional

infrastructure attributes. By this, full advantage is taken of the agent-based

nature of the MATSim transport simulation, which allows to follow individual

synthetic travelers during the whole simulated day. It is discussed how the ap-70

proach can be extended to account for personal and vehicle-specific attributes

that influence the behavior of cyclists [12].

The remainder of this paper is structured as follows: Section 2 summarizes

a literature review, which identifies attributes of infrastructures and aspects of

mobility that are relevant for cyclists, especially with respect to route choice75

and travel speed. Section 3 introduces the agent-based transport simulation

framework MATSim and the corresponding input data preparation including

the retrieval of cyclist-relevant infrastructure attributes based on open data.

This sections also describes the adaptations in terms of travel time computation,

utility computation, routing, and scoring that were made in order to be able80

to simulate bicycle traffic more realistically. Section 4 presents results for an

illustrative scenario, in which the implemented adaptations are analyzed. In

section 5, the methodology, the findings, and the potential of the approach are

discussed and an outlook for possible further steps is given.
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2. Literature review85

Choices of cyclists, in particular cyclists’ route choice, have been surveyed

in various studies, mostly in terms of stated-preference analyses [13, 3, 5, 2],

but recently also in terms of GPS-based revealed-preference analyses [1, 6, 11].

Most studies report that their results are partially in agreement with findings

from previous studies, while other findings stand in contradiction [6, 3, 1].90

Travel time and route length have generally been found to be important

factors in route selection [5, 6, 11]. Studies also largely agree that cyclists tend to

avoid slopes [1, 6, 2, 11, 12]. Different authors state different specific definitions

of slope to be most significant, ranging from average slope and maximum slope

to summations of gains and losses in height on a route. Broach et al. [11]95

explicitly research different definitions of slope and find route lengths within

defined categories of average positive slope to be most significant.

There is also agreement that cyclists strongly prefer a continuous cycling

infrastructure [5, 2]. Hood et al. [6] specifically find that cyclists prefer bicycle

lanes over other types of bicycle infrastructure. Menghini et al. [1] emphasize the100

importance of direct and marked routes for cyclists, which is confirmed by other

studies [14]. Bai et al. [12] add that the existence of bicycle lanes significantly

increases the comfort perception of cyclists, which can also be achieved by a

physical separation between motorized traffic and bicycle lanes.

Cyclists also generally try to avoid signal-controlled junctions [1, 5, 11, 3].105

Additionally, some stated-preference studies find the type of parking along

cycling facilities [5, 2] and existence of bus stops [2] to be influential.

Next to travel time, Sener et al. [5] find motorized traffic volumes to

be one of the most important attributes in bicycle route choice. Broach et

al. [11] confirm that cyclists are highly sensitive to traffic volumes and add that110

the existence of bicycle lanes helps to offset the negative effects of adjacent

traffic. They find that streets with a high traffic volume and a dedicated bicycle

lane are perceived about as attractive (or unattractive) as streets with low

traffic volumes and no dedicated bicycle lane. While Li et al. [2] confirm the
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importance of motorized traffic for decisions of cyclists, Hood et al. [6] and115

Milakis and Athanasopoulos [3] find it to be less relevant.

Studies also agree that pavement surface conditions and riding smooth-

ness are important factors [14, 15, 3]. To be able to include such aspects into

a model, it is important to know how cyclists evaluate different road surface

types. Hölzel et al. [15] – using a one-degree-of-freedom pendulum attached to120

a bicycle to quantify rolling resistance – find that asphalt is associated with

the lowest rolling resistance and level of vibrations, followed by concrete slabs

and self-binding gravel. The highest rolling resistance is measured for cobble-

stones. Its quantitative value differs significantly from that of the three other

surface materials. In a similar approach, B́ıl et al. [16] – using an accelerometer125

attached to a bicycle – find old cobblestone pavements to be associated with

significantly higher vibrations and, thus, rolling resistance to be higher than

on other types of pavement including asphalt (new, worn, and uneven), con-

crete (uneven and interlocking) and unpaved roads. Ayachi et al. [13], based on

a stated preference survey, confirm that asphalt roads and concrete roads are130

more comfortable than other types of roads.

Finally, various attributes of the cyclists (e.g. age, gender) and the type of

the bicycle are relevant [12]. Related to this, Hebenstreit and Fellendorf [17] use

user-group-specific bicycle friendliness values for different links. The purpose of

the trip can also have an effect. For example, Sener et al. [5] and Hood et al. [6]135

find that steep hills are disfavored more strongly by women and commuters, i.e.

riders whose trip purpose is going to (or returning from) work.

In a recent study based on GPS observations, Flügel et al. [18] develop a

model that describes cyclists’ travel speeds based on attributes related to the

cyclist, the trip, and the infrastructure. They find that cyclists’ speeds decrease140

roughly linearly with increasing slopes: At a gradient of 9%, the average cyclist

rides 42.7% slower than on level terrain.

In summary, modeling bicycle traffic and cyclist’s route choice is a challeng-

ing task. Route choices of users of motorized vehicles are mostly modeled based

on assumptions of homogeneity among tripmakers. Typically, they are assumed145
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to minimize travel time or generalized costs whose components (e.g. monetary

cost or distance) are typically strongly correlated with travel time (an exception

is toll; cf. Nagel et al. [19]). As discussed before, cyclists, by contrast, typically

also take into account objectives that are not necessarily correlated with travel

time (e.g. riding comfort, gradients, and presence of motorized traffic). A bit150

philosophically, one could say that a car ‘homogenizes’ the travel behavior of

transport users who themselves have much more heterogeneous characteristics.

In cycling, by contrast, a large portion of this heterogeneity of transport users

directly comes into effect. Therefore, to model bicycle traffic realistically, these

relevant attributes need to be taken into account in a reasonable way.155

3. Methodology

To simulate bicycle traffic in this study, MATSim [8], an agent-based demand

adaptation and traffic assignment model, is used. In MATSim, each person is

resolved individually as an agent and has one or more plans. A plan is a chain

of activities (e.g. home–work–shop–home), including locations and activity end160

times. Activities at different locations are connected by trips, adhering to the

notion of transport as a derived demand. MATSim is based on a co-evolutionary

algorithm, where each iteration consists of the following three steps: Traffic

simulation, scoring, and replanning (cf. figure 1).

In the traffic simulation step (also referred to as mobility simulation (mob-165

sim) or network loading), the demand for transport is simulated on the physical

network. The selected plans of all agents are executed simultaneously. The

default physical simulation is a queue model, in which every roadway segment

(link) is modeled as a first-in-first-out (FIFO) queue. This computationally

efficient design makes MATSim suitable for large-scale scenario (e.g. scenarios170

which include whole metropolitan regions).

After the traffic simulation, the choice processes (decision making) that trav-

elers undertake, partially in reaction to what they experience while traveling in

the synthetic reality, are simulated. This consists of scoring and replanning and
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Figure 1: MATSim simulations steps.

is also referred to as mental simulation. In the scoring step, agents compute,

based on the events of the full simulated day and the notion of utility, a score4

Splan =

N−1∑
q=0

Sact,q +

N−1∑
q=0

Strav,q , (1)

where Sact(q) is the utility that the agent receives from performing activity

q, Strav,mode(q) is the (typically negative) utility that the agent receives from

making the trip (leg) after activity q, and N is the number of activities.

The utility Sact,q of performing activity q is computed as

Sact,q = βdur · ttyp,q · ln
( tdur,q
t0,q

)
, (2)

4 It might be worth mentioning that score is the technical term in the MATSim context

for what is in economics commonly referred to as utility. Also cf. Nagel et al. [20].
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where βdur is the marginal utility of activity duration at the activity’s typical175

duration, ttyp,q is the typical duration of an activity of the type of activity q,

tdur,q is the duration of activity q, and t0,q is the duration from which on a

positive utility can be obtained.5 As described by Nagel et al. [20], the utility of

performing an activity can include additional other components, e.g. for having

to wait or for arriving too late at a time-constrained activity.180

The (typically negative) utility Strav,q of traveling leg q in equation 1 is

computed as

Strav,q = Cmode(q) + βtrav ,mode(q) · ttrav ,q + βd,mode(q) · dtrav ,q , (4)

where Cmode(q) is a mode-specific constant, βtrav ,mode(q) is the marginal utility

of time spent traveling by mode(q) that is used for leg q, ttrav ,q is the travel

time on leg q, βd,mode(q) is the marginal utility of distance when traveling by

mode(q), and dtrav ,q is the distance traveled on leg q. The distance compo-

nent is in MATSim’s default utility function related to the utility of monetary185

expenditures [20, equation 3.4]. Since it is assumed that for cycling marginal

monetary costs of traveling are negligible, the monetary utility component is

not included in equation 4 for better comprehensibility and brevity.

Taking into account this score, agents decide in the replanning step of the

iteration which plan to execute in the traffic simulation of the next iteration.

Alternatively, agents may generate a new plan by modifying a copy of one

randomly selected existing plan of their plan choice set. Modifications may be

done with respect to various choice dimensions (e.g. routing or time choice) by

5 The computation of t0,q can be specified as either uniform or relative. In this study,

the setting typicalDurationScoreComputation = relative is chosen. As such, t0,q is defined

by the expression t0,q := ttyp,q ·exp(−1/prioq), where prioq is a configurable parameter. This

allows to re-write equation 2 as

Sact,q = βdur · ttyp,q · ln(tdur,q/ttyp,q) +
βdur · ttyp,q

prioq
. (3)

At the typical duration (i.e. tdur,q = ttyp,q), the first term is zero, and thus all activity types

with the same value of prioq generate the same relative score of βdur/prioq per hour at their

typical durations.

9



applying (innovative) strategy modules. When computing a new route, agents

use Dijkstra’s algorithm [21]. The generalized cost Ctrav,q of a route (or leg) q

is, in MATSim’s default version, computed as

Ctrav,q = −(βtrav ,mode(q) − βdur) · ttrav ,q − βd,mode(q) · dtrav ,q . (5)

−βtrav ,mode(q) · ttrav ,q is the direct disutility of travelling; since βtrav ,mode(q) is

typically negative, this term is typically a positive cost contribution. −(−βdur) ·190

ttrav ,q approximates the effect of having to make activities shorter and thus

losing utility when travel takes longer. −βd,mode(q) · dtrav ,q is the disutility of

distance; since βd,mode(q) is typically negative, this term is again a positive cost

contribution.

In terms of the components that are included in equation 5, routing is con-195

sistent with scoring. As can be seen by closer inspection, however, the numeric

values of utility computed for scoring (cf. equation 1) and routing (cf. equation 5)

will in general not be the same. This is due to the logarithmic component of

the scoring equation (cf. equation 2). Accordingly, the ratio between the utility

components, in particular that of the cost of time, varies between different users200

and different trips. Conceptually, this means that agents have different values

of travel time savings (VTTS) [22]. The router, by contrast, assumes a constant

ratio between the marginal utilities.

Intuitively, one could, therefore, argue that it should be tried to increase

the consistency between the routing module (and potentially other innovative205

modules) and scoring. This is, however, associated with various issues: To

achieve consistency, the actual activity times tdur,q would need to be known

when applying the router. However, this is – unless activity times are fixed by

simulation configuration – not possible as these times are emergent from the

traffic simulation and, therefore, only known once the traffic simulation of an210

iteration is finished.

Furthermore, even if a correct linearization of the scoring function was

achieved and the factors in equation 5 correctly adapted, the router (in its

default implementation) operates on travel times that are stored per link in
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15-minute time bins. As such, even a router which is correctly adapted to the215

scoring function may not find the best solution. Nagel et al. [22] discuss further

conceptual issues related to achieving consistency between routing and scoring.

Most importantly, however, the achievement of such a consistency is not

in line with the fundamental concept of MATSim’s co-evolutionary algorithm.

In fact, it is intended that the innovative strategy modules (e.g. the routing220

module) are conceptually independent from scoring. Scoring is meant to be

the ‘intelligent’ component of the simulation of the decision making process of

agents and has all relevant information of the synthetic reality, while innovation

can be based on arbitrary (mental) models of that system [22]. The relevant

goal is that routing and scoring act on the simulation in such a way that, over225

the course of multiple iterations, a realistic representation of real-world traffic

emerges in the simulation. To achieve this, the routing module can, in fact, be

quite ‘unsophisticated’ and, for instance, be largely based on randomness, as

long as it manages to find sufficiently diverse travel options.

Considering an evolutionary computing perspective to address this problem,230

Nagel et al. [22] suggest to increase the variability of the solutions that the

router generates by varying the ratio between factors of the components of the

utility function used for routing (cf. equation 5). For a tolling study for Gauteng

in South Africa, it was, indeed, found that such a randomizing router generates

‘better’ solutions than a manually calibrated, deterministic router [22].235

After the router has generated solutions, which are then simulated in the

synthetic reality, the scoring function will – based on detailed knowledge of all

the events that occurred in the simulation – compute a score. This score will

eventually determine which alternatives remain in the choice set and which ones

are soon to be dropped.240

In particular with respect to modeling the interactions of cyclists with mo-

torized traffic, it is clear that the relevant events (e.g. number of passing cars on

a given link) only emerge during the simulation of the transport system. Making

these information available to the router is computationally not straightforward

and also appears counterintuitive.245
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In summary, a randomizing routing approach appears as a good solution as

it significantly reduces both the consistency burden of the software system and

the level of detail that the innovative module needs to have about the problem

(e.g. the necessary time resolution of the routing module) [22]. In particular,

a separation of innovation and scoring is in line with the very concept of a250

co-evolutionary simulation system.

If a new plan is created in the replanning step, this plan is marked as the

agent’s selected plan for the next iteration. Otherwise, if no new plan is created

and directly selected, agents select a plan from their plan choice set according

to a probability distribution that converges to a multinomial logit model [23].255

Over the course of iterations (cf. figure 1) transport demand adapts itself to

transport supply over the course of iterations. This loop is iterated until the

system is sufficiently ‘relaxed’ as typically determined based on the development

of agents’ plan scores. A transport simulation scenario whose plans are relaxed

may be applied for policy analysis.260

3.1. Data

In general, a MATSim network consists of nodes and links. Nodes store coor-

dinates, while links have a start and an end node, a free-flow speed, a link length,

a flow capacity, a storage capacity, and allowed modes. OpenStreetMap [OSM,

24] is the typical main data source for the creation of MATSim networks. In this265

study, additional information are extracted from OSM, which describe proper-

ties of the infrastructure that are relevant for the decisions of cyclists.

OSM objects have tags, which are key-value pairs. Roads are represented by

way objects, which can, besides others, possess the tags highway and cycleway.

Additional information like bicycle-specific restrictions can be captured from270

the tag bicycle. As such, a main road with a bicycle lane will be tagged as

highway=? and cycleway=lane. In case the cycling infrastructure is located on

the sidewalk, the road will have the tag cycleway=track. A standalone bicycle

track away from roads for motorized traffic is tagged as highway=cycleway.

The attribute smoothness represents an evaluation of the surface, ranging275

12



from excellent to impassable. It provides the information that is required

to evaluate riding comfort (cf. section 2). However, only 12% of all links in

Berlin possess this attribute. Therefore, it does currently not appear reasonable

to base a model on this attribute. As a proxy, the attribute surface, which

reflects the type of pavement surface, can be used. In Berlin, for instance, 58%280

of all links are provided with a surface tag. Additionally, some highway types

are assigned with defaults (e.g. primary highways are assumed to always be

asphalt roads), such that the surface type of these roads can be easily inferred.

As a result, the surface of most links can be identified by OSM.

3.1.1. Data on elevation and gradients285

As pointed out in section 2, road gradients (slopes) are an important deter-

minant of a cyclist’s route choice. Because of the absence of such information

in OSM, a digital elevation model (DEM) is used. Broadly, there are two types

of DEMs:

(1) Digital surface models (DSM) are mostly created based on satellite imag-290

ing and reflect the surface of the earth including all objects on it, e.g. buildings

and trees. Some DSMs like SRTM (Shuttle Radar Topography Mission), pro-

vided by NASA, are openly available. As DSMs are, however, not able to

capture the surface of the bare ground, these models are not suited for the task

at hand as their use would, for instance, create unrealistic slopes in the vicinity295

of larger buildings.

(2) Digital terrain models (DTM), by contrast, represent the ground surface

of the earth without any objects on it. They are created by photogrammetric

measurement using aerial picturing and laser scanning, but are rarely openly

available. There are, however, algorithms which are able to compute a DTM300

from a high resolution DSM. In this study, EU-DEM [European Digital Eleva-

tion Model, 25] is used, which is a hybrid of SRTM and ASTER (Advanced

Spaceborne Thermal Emission and Reflection Radiometer, also provided by

NASA) data. By this combination, a high number of artifacts could be re-

moved. EU-DEM is free to download and has a resolution of 25m. For Berlin,305

13



a test against SRTM data confirmed that unrealistic slopes due to buildings are

significantly decreased.

3.2. Adaptations to simulate bicycle traffic

In this section, the adaptations to simulate bicycle traffic in terms of network

generation, the computation of travel speeds and travel times, and the utility310

computations for scoring and routing are described in detail.

3.2.1. Network generation

A BicycleOsmNetworkReader was written to create a MATSim network

suited to simulate bicycle traffic. It extends the default network generation

procedure in two ways:315

(1) Besides OSM, the EU-DEM elevation model (cf. section 3.1.1) is used,

which provides land elevations in the GeoTiff format. For each node of the to-

be-created network, the elevation of its location is queried from the EU-DEM

model by an ElevationDataParser that is integrated into the BicycleOsm-

NetworkReader. The parsed elevation is added as the third dimension of the320

node’s coordinate in the MATSim network, taking advantage of a recent amend-

ment to MATSim for 3D coordinates [26].

(2) The network is attributed with a number of additional properties parsed

from OSM that are relevant for the behavior of cyclists in the transport system

(cf. section 2). This takes advantage of another recent enhancement of MAT-325

Sim, which allows links (and similarly other MATSim objects) to be enriched

with user-defined attributes in addition to the usual link properties that were

described in section 3.1. For bicycle modeling, the cycleway type and the surface

type of a given link are added.

In contrast to default network generation settings, lower-hierarchy ways (e.g.330

pedestrian zones, paths, service roads) are included into the network as well.

Note that despite the enrichment with further link attributes and elevation infor-

mation, this process is still spatially transferable because only openly available

input data (OSM and EU-DEM) are used.
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3.2.2. Travel speeds and travel times335

To determine the speed by which a bicycle can traverse a given link, it is, first,

considered if the link contains some form of dedicated cycling infrastructure.

This is the case for standalone cycleways (tag highway=cycleway) or when

a road possesses a bicycle lane (tag cycleway=lane) or a bicycle track (tag

cycleway=track). For these facilities, it is assumed that – before considering340

other attributes that may reduce feasible cycling speeds – an infrastructure-

based minimum speed of 15 km/h is feasible. For instance, the cycling speed in a

pedestrian zone, which would have a lower feasible speed otherwise, is increased

to 15 km/h in case a dedicated bicycle track runs through the pedestrian zone.

Second, the maximum speed of the vehicle is considered. This is essential345

because the pure infrastructure-based (or regulatory) speed limit would allow

higher speeds on most roadways than those that bicyclists can normally reach.

For this study, it is assumed that a bicycle can travel 20km/h at most. Based

on this, it would also be possible to further distinguish between different types

of bicycles (e.g., race bicycles vs. beach cruisers) with their typical maximum350

speeds [12].

Third, the impact of road gradients is observed. Roughly based on Flügel

et al. [18, cf. section 2], speeds are decreased linearly with increasing slope such

that the speed on a link with a gradient of 10 % equals 50 % of the original

speed at level. Speeds are never reduced to less then 10 % of the corresponding355

at-grade speed, assuming that a cyclist will get off their bicycle on a steep hill

and walk it slowly. Potential downhill speed increases are not taken into account

because of their lower impact on cyclists’ choices and their comparatively unclear

theoretical foundation6.

Finally, speed reductions in relation to riding smoothness, inferred by surface360

type (cf. section 2), are taken into account. Table 1 describes these speed

reductions.

6A consideration of downhill speed changes is, however, straightforward and can be included

once corresponding empirical data become available.
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Table 1: Speed factor for different road surface types (not all values shown).

Surface Speed factor

asphalt 100%

concrete plates 80%

compressed 70%

Surface Speed factor

gravel 70%

cobblestone 50%

sand 20%

3.2.3. Scoring function

In order to account for properties of the route that are particularly relevant

for cyclists (as discussed in section 2), but which do not affect travel speeds

(cf. section 3.2.2), the scoring of a leg (cf. equation 4) is extended. In addition

to the utility components related to travel time and travel distance, new util-

ity components related to the type of infrastructure, riding comfort, and road

gradient are added. As such, the utility (score) of traveling leg q by bicycle is

computed as

Strav,q = Cb + βtrav ,b · ttrav ,q + βd,b · dtrav ,q

+
∑
a∈q

(
βinf (a) + βcomf (a) + βgrad(a)

)
· `a (6)

where Cb is a bicycle-specific constant, βtrav ,b is the marginal utility of time

spent traveling by bicycle, ttrav ,q is the travel time (by bicycle) on leg q, βd,b365

is the marginal utility of distance by bicycle, dtrav ,q is the distance traveled on

leg q, βinf (a) is the marginal utility of distance on the infrastructure type of

link a, βcomf (a) is the marginal utility of distance on the comfort level of link

a, βgrad(a) is the marginal utility of distance on the gradient of link a, and `a

is the length of link a. Note that the travel time ttrav ,q takes into account the370

speed changes described in section 3.2.2. To accomplish the scoring defined in

equation 6, two alternative approaches were implemented: A leg-based scoring

function and a link-based scoring function.

The leg-based scoring function (called BicycleLegScoring) extends MAT-

Sim’s default scoring function for travel legs (cf. equation 4, called Charypar-375
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NagelLegScoring) and – whenever a travel leg of an agent who goes by bicycle

is scored – retrieves the network route. By this, all network links of the route

can be identified and the computations in the sum term (i.e. the lower line) of

equation 6 be carried out. The concrete functions of these computations are

outsourced into a utility class called BicycleUtilityUtils.380

The link-based scoring function (called BicycleLinkScoring) uses a differ-

ent approach. It is based on simulation events that MATSim throws whenever

a vehicles enters traffic (at a beginning of a trip), enters a new link (while en

route), and leaves traffic (at the end of a trip). By this, all links that an agents

traverses are immediately known, including the time (in seconds) of entering and385

exiting the link. With that information all required computations can be per-

formed. The link-based approach also allows for computations that are based on

travel times on specific links. This is in contrast to the leg-based scoring, which

does not have the information how much time an agent spent on a specific link.

In particular, the link-based scoring approach is required for the consideration390

of interactions of bicycles with motorized traffic (e.g. cyclists being passed by

cars) because it is necessary to know at which exact time which cars and which

cyclists where on a specific link. For the concrete computation, the functions of

the aforementioned utility class BicycleUtilityUtils are used.

3.2.4. Scoring of interaction with motorized traffic395

As pointed out in section 2, the amount of motorized traffic on a network

section is an important determinant of cyclists’ travel behavior, and, in partic-

ular, route choice. Cyclists tend to avoid streets with a lot of motorized traffic,

which tends to make cycling uncomfortable and potentially unsafe, especially if

no dedicated cycling infrastructure is present.400

So far, only attributes of the infrastructure, irrespective of the use of these

infrastructures by other tripmakers, were considered (cf. section 3.2.3). It is

obvious that the number of cars and bicycles on a specific network section at a

specific time is emergent from the simulation, i.e. it is only known when that

time step in the simulation of the physical reality (traffic simulation) is reached.405
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As described at the beginning of section 3, it is one of the core features of

the agent-based transport simulation framework MATSim to follow individual

tripmakers (agents) during their whole day in the simulation. As such, an event

that happens in the simulation (e.g. the passing of a cyclists by a car) can be

directly taken into account. To achieve this, the bicycle-specific scoring function

(cf. equation 6) is extended by the additional term∑
a∈q

βmotor · nmotor(a,∆t) , (7)

where βmotor is the marginal utility of an interaction of a cyclist with a motorized

vehicle, and nmotor(a,∆t) is the number of interactions with a motorized vehicle

on link a during time period ∆t, which is the time that the cyclist needs to tra-

verse link a. 7 As explained in section 3.2.3, it is necessary to use the link-based

version of the new bicycle-specific scoring function (i.e. BicycleLinkScoring)410

to be able to add this additional scoring component because only the link-based

implementation has complete information regarding which cars and which cy-

clists travel on a specific link at a specific time.

3.2.5. Routing module

As discussed at the beginning of section 3, an approach that varies the ratio

between factors of the components of the utility computation is proposed to

generate a sufficiently large selection of potential travel option that can then

be ‘tried out’ by agents in the simulation. As explained for MATSim’s default

leg scoring function (cf. equation 4), a randomizing router can be derived by

including all those utility components that are also part of the scoring function

(cf. section 3.2.3) and by randomizing the marginal utility values of these utility

component (except the first one, i.e. the marginal utility of time). This pro-

vides a sufficient exploration of the search space of possible travel options (here:

7 Note that this simplistic approach assumes that every car that travels on the link during

time period ∆t passes the cyclist. This inaccuracy will resolve once this approach is integrated

with a recent enhancement of MATSim to explicitly simulate vehicle passings [27].

18



routes), which is particularly critical in the bicycle context, where – as pointed

out in section 2 – the correlation between relevant properties (e.g. route length,

comfort, gradients) to travel time is much weaker than in routing tasks for other

modes of transport [4]. Accordingly, the utility function for the bicylce router

becomes

Ctrav,q = β̂trav,b · ttrav ,q + β̂d,b · dtrav ,q

+
∑
a∈q

(
β̂inf(a) + β̂comf(a) + β̂grad(a)

)
· `a , (8)

where, for instance, the value of the randomized marginal utility of distance β̂d,b

is drawn from a log-normal distribution and realized as

β̂d,b = βd,b ·
exp(σ · Z)

exp(σ2/2)
, (9)

where Z is drawn from a Gaussian distribution with mean zero and variance one415

using Java’s nextGaussian() method. σ is a width parameter. The log-normal

distribution was chosen because it contains values from 0 to∞. The denomina-

tor exp(σ2/2) effects that the expectation value of equation 9 is βd,b [22]. The

three marginal utilities of infrastructure βinf (a), comfort βcomf (a), and gradient

βgrad(a) are randomized analogously, with new draws of the random variable Z.420

As such, the randomized marginal utilities are agent- and iteration-specific, i.e.

drawn once per agent in each iteration.

The randomized marginal utility of traveling in equation 6 is computed as

β̂trav,b = βtrav ,b · (1 +X) , (10)

where X is drawn from a Gaussian distribution with mean zero and standard de-

viation 0.05. This is an additional randomization compared to the randomizing

router introduced by Nagel et al. [22]. The variability this creates is, however,425

much lower than that of the randomization of the other scoring components.

This additional randomization is required because those routes that are good

options because of low volumes of motorized traffic might never be found by the

router otherwise as there is no component in the utility function of the router
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that takes these properties into account. Based on the described additional ran-430

domization, the search space, which otherwise operates between time-, distance-

, infrastructure-, comfort-, and gradient-optimal routes is further extended so

that routes that are ‘good’ options mainly due to a good evaluation in terms of

low motorized traffic volumes are more likely to be found.

3.2.6. Utility values435

The marginal travel time and travel distance utilities are chosen as βtrav ,b =

−6.0 utils/h and βd,b = −0.0004 utils/m, such that an additional meter yields

the same utility offset as an additional travel time of 1s when traveling at a

speed of 15 km/h.

The parameter βinf (a) is intended to pick up aspects of continuous and well-

marked cycling infrastructure (cf. section 2) of a given link a. Its value is com-

puted as

βinf (a) = βmax
inf (a) ·

(
1− inf (a)

)
, (11)

where βmax
inf (a) = -0.0002 utils/m, such that at most half of the marginal utility440

of distance can be added. inf (a) is dependent on the highway type and the

existence of a dedicated cycling infrastructure. The values of this term are

stated for some highway types in table 2. It can be seen that for a dedicated

cycleway no (negative) utility offset is added because these infrastructures are

regarded as very accommodating for cyclists. A primary road without any form445

of cycling infrastructure, by contrast, receives the maximum additional utility

offset.

The marginal utility of comfort βcomf (a) is intended to reflect pavement

conditions and riding smoothness (cf. section 2): The smoother the surface,

the higher the utility value. Just like for the marginal utility of infrastructure,

the maximum value of the marginal utility of comfort is chosen as βmax
comf (a) =

-0.0002 utils/m. The effectively used marginal utility of comfort for a link a is

computed as

βcomf (a) = βmax
comf (a) ·

(
1− comf (a)

)
, (12)
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Table 2: Infrastructure factor for different highway types (not all values shown).

Highway type Infrastructure factor

primary 0%

primary with dedicated cycling infrastructure 95%

secondary 30%

secondary with dedicated cycling infrastructure 95%

cycleway 100%

where the value comf (a) of a link a with a specific surface type is the same as

the value of the surface-based speed factors of table 1.

The marginal utility of gradient βgrad(a) considers the fact that cyclists450

try to avoid uphill slopes (cf. section 2). Its value is selected as βgrad(a) =

−0.004 utils/(m/100m). This means that an agent climbing a hill of 10 m

height receives the same utility offset as one who takes a detour of 500 m. This

is loosely based on the marginal rates of substitution (MRS) reported by Hood et

al. [6]. Broach et al. [11] find cyclists to be willing to pedal 2,750 m (or 2,190 m455

when commuting) on flat terrain if the alternative is 1,609 m (i.e. 1 mile) with

an upslope of 2 % to 4 %, which confirms the aforementioned substitution rate.

The value of the marginal utility of an interaction with a motorized vehicle

(cf. section 3.2.4) is chosen as βmotor = −0.004 utils. This means that the

utility offset incurred by traveling for one hour on links with a high motorized460

traffic load (e.g. 1200 veh/h, i.e. one car every 3 seconds) compared to traveling

on roads with low motorized traffic loads (e.g. 200 veh/h, i.e. one car every 18

seconds) is the same as the utility offset of a detour of 20 min. These values are

informed by findings of Sener et al. [5].

4. Results465

In this section, the adaptations described in section 3.2 are tested in an

illustrative scenario. This scenario is based on the so-called equil scenario [8],
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which – in its original version – contains nine alternative, but fully identical

routes. The corresponding network is depicted in figure 2. For testing the

Figure 2: Equil network with link identifiers

bicycle adaptations, the equil scenario has been modified8 such that the lengths470

of the nine alternative routes increase from the central route to the outer routes:

The central route (links 6 and 15 in figure 2) has a length of 15,000 m between

the nodes where the nine alternative routes fork and merge again, while the other

routes – ascending toward the outermost routes – possess lengths of 15,500 m,

16,000 m, 17,000 m, and 18,000 m. All links are characterized as primary roads.475

1,200 agents travel from the left of the scenario to the right, starting their

trip with an offset of 3 seconds to their predecessor, with the first agent starting

at 9:00. The only choice they can take is selecting one of the nine alternative

routes, i.e. no innovative strategy module other than the routing module is

activated for this test. Because of the random components of the router, agents480

may also choose a non-optimal route, while the probability to do so decreases

with the extent to which that route deviates from the optimum with regard

to utility as in equations 6 and 7. Over the course of iterations, scoring and

plan selection effect that the optimal route with respect to the coring function

8 This scenario can be run by invoking RunBicycleExample; cf. http://matsim.org/

javadoc → bicycle → RunBicycleExample.
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is chosen more and more frequently.485

4.1. Infrastructure-related attributes

First, the impact of the consideration of various infrastructure-related at-

tributes on the behavior of cyclists is analyzed. The interaction of cyclists with

motorized traffic is not yet taken into account in this section. All experiments

are simulated over 10 iterations.490

Figure 3a represents the base case where all links have identical properties

(except different link lengths as described above). Expectedly, agents tend to

choose the more central routes because of their better travel utility values, which

are due to lower travel times on these routes.

In figure 3b, the five central links are converted into streets that are paved495

with cobblestones. As described in section 3.2.2, this reduces travel speeds

and comfort. As a consequence, it can be seen that agents avoid the routes

with cobblestones quite clearly and divert to the outer (non-cobblestone) routes.

Among these four outer routes, the two shorter ones (i.e. the routes via link 2

and via link 9, respectively (cf. figure 2, both with a length of 17,000 m) are500

more strongly used than the two longer, outermost route alternatives (each with

a length of 18,000 m): As can be seen in table 3, after 10 iterations, 545 and 531

agents use the shorter routes via link 3 and link 9, respectively, while only 47 and

48 agents use the somewhat longer routes (via link 2 and link 10), respectively.

Of the routes that contain links paved with cobblestones, only the route via link505

6, the absolute shortest in the network (with a length of 15,000 m), is used by

29 agents. As can also be seen in table 3, the router immediately (i.e. already

in iteration 0) finds quite exactly those route options that prevail over multiple

iteration.

Next, the five central links are designated as pedestrian zones (cf. figure 3c),510

where cyclists can only travel with reduced speeds (cf. section 3.2.2). As ex-

plained in section 3.2.3, they also obtain a somewhat lower infrastructure util-

ity when riding through a pedestrian zone. As in the case before, agents quite

clearly divert to the outer (non-pedestrianized routes) and accept longer dis-
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(a) Base Case: All links designated as

highway = Primary.

(b) Five central links are paved with cob-

blestones.

(c) Five central links are designated as

highway = pedestrian.

(d) Six outer links have a bicycle lane (i.e.

designated as cycleway = lane).

(e) Five central links have a gradient of

3%.

(f) Five central links have a gradient of

3%, two upper of them with a bicycle lane.

Figure 3: Experiments with illustrative scenario for different infrastructure-related attributes.
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tances rather than the additional travel time and discomfort that riding through515

the pedestrian zones is associated with. The higher travel times in the pedes-

trian zones can be observed in figure 3c. Agents who use the central routes have

made it significantly less far on the network than the agents who travel on the

outer routes.

Now, the six links on the outer routes are equipped with dedicated bicycle520

lanes. This effects that agents partly divert to these outer routes (cf. figure 3d)

were they find a more accommodating infrastructure for them and, thus, obtain

a better infrastructure-based utility. Compared to the two previous experi-

ments, however, there is not such a clear preference of the outer routes as still

many agents use the shorter, central routes with no dedicated cycling infrastruc-525

ture. In table 4, it can be observed that, over the course of the iterations, the

preference for the two shortest among the six routes with bicycle lanes becomes

clearer.

Table 3: Bicycle counts when some links

have cobblestones (marked with (C)).

Link It. 0 It. 10 It. 100

2 46 47 9

3 527 545 594

4 (C) 0 0 0

5 (C) 0 0 0

6 (C) 21 29 26

7 (C) 0 0 0

8 (C) 0 0 0

9 566 531 565

10 40 48 6

Table 4: Bicycle counts when some links

have bicycle lanes (marked with (L)).

Link It. 0 It. 10 It. 100

2 (L) 0 0 0

3 (L) 7 7 14

4 (L) 127 152 357

5 199 156 25

6 558 569 392

7 171 158 38

8 (L) 181 150 354

9 (L) 7 7 10

10 (L) 0 1 0

In figure 3e, a gradient of 3 % is introduced on the five central links by

increasing the elevation value of the coordinate of their respective end nodes.530

As explained in section 3.2.2, the negative slopes (downhill) on the subsequent

links do not have an impact on travel utilities in the current implementation. As

expected, many agents avoid the slopes and divert to the outer routes and accept
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longer distances and travel times rather than having to travel with reduced

speeds and incurring a negative offset in their gradient-based utility.535

Figure 3f shows a tradeoff situation between link length, gradient, and in-

frastructure. The addition of bicycle lanes on the two upper links with gradients

helps counteracting the unattractiveness of these uphill links (cf. figure 3e), on

which agents also have to cover a somewhat longer distance than on the central

route. As such, it can be observed that some agents use these routes after the540

addition of bicycle lanes.

4.2. Traffic-related attributes

Now, the reaction of cyclists to interaction with motorized traffic as they

have experienced it in the simulation of the synthetic reality (cf. section 3)

is taken into account. Such an interaction with a motorized vehicle can, for545

instance, consist in a cyclist being overtaken by a car, potentially on a street

with no dedicated cycling infrastructure.

By applying the amendments described in section 3.2.4, cyclists translate

such events into their scoring, which – over the course of multiple iteration in

the co-evolutionary simulation framework – will make the selection of routes550

with a lot of motorized traffic less likely.

While for some choice situations related to infrastructure properties (espe-

cially those choice situations where the best option was clearly distinguishable;

cf. section 4.1), the router managed to find the preferred route options imme-

diately (i.e. in iteration 0), this cannot be the case in the current experiment,555

which addresses events that are emergent from the simulation of the physical

reality. As such, a corresponding adaptation of agents’ behavior can only be

expected after a number of iterations, in which agents have ‘experienced’ these

events (the passings) in the simulation of the synthetic reality.

In figure 4, two simulation runs with each 100 iterations are compared. The560

first run (cf. figure 4a) uses the settings that were used to create the results in

figure 3a (using 100 iterations instead of 10 iteration being the sole alteration).

In the second run (cf. figure 4b), a synthetic MotorizedInteractionEvent is
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(a) Base network. (b) Base network with 1200 cars/h on cen-

tral route.

Figure 4: Experiments with illustrative scenario for interaction with motorized traffic.

thrown every 3 seconds on link 6 (i.e. the first link of the central route, cf. fig-

ure 2), which can be interpreted as a motorized traffic load of 1,200 cars/h on565

this link. For each such event that happens while a cycling agent traverses this

link, this agent incurs a score offset of βmotor = −0.004 utils as described in

section 3.2.4. As can be seen in the figure 4b, after 100 iterations, agents avoid

the central route, while this route is the preferred option if there is no motorized

traffic on this route (cf. figure 4a). Table 6 shows agents’ adaptation process to570

the traffic situation in the two experiments over the course of multiple iterations.

Table 5: Bicycle counts on base network

(no other vehicles present).

Link It. 0 It. 10 It. 100

2 0 0 0

3 1 0 0

4 34 44 9

5 184 187 38

6 744 729 1101

7 200 194 42

8 37 43 9

9 3 0 0

10 0 0 0

Table 6: Bicycle counts on base network

(1200 cars/h on route marked with (C)).

Link It. 0 It. 10 It. 100

2 0 0 0

3 1 0 0

4 34 44 30

5 184 260 476

6 (C) 744 542 134

7 200 270 515

8 37 53 44

9 0 3 0

10 0 0 0
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5. Discussion and outlook

In this study, different amendments to the agent-based transport simulation

framework MATSim were introduced in order to model and analyze bicycle

traffic more realistically.575

The network generation procedure has been enriched by a method that

retrieves elevation data from an open data source. Furthermore, additional

cycling-relevant infrastructure attributes like road category and existence of

dedicated bicycle infrastructure are included into the network, taking advan-

tage of a recent amendment to MATSim objects, which allows them to contain580

arbitrary additional attributes.

For the computation of travel times for cyclists, features of the network (incl.

aforementioned additional attributes) as well as gradients and road surface type

are observed.

Similarly, the scoring function has been adjusted to take into account road585

gradients, cycling infrastructure, and riding comfort apart from travel time and

distance that are already part of the default version of the MATSim utility

function. Furthermore, an explicit evaluation of the interaction of cyclists with

motorized vehicles is included into the scoring function, picking up on the effect

that cyclists tend to avoid streets were they are affected by many passings by590

motorized vehicles. By this, full advantage is taken of the fact that bicycles are

simulated explicitly on the network.

Similarly, MATSim’s routing module was adjusted to enable it to find rea-

sonable route options for cyclists, which can then be simulated in the synthetic

reality and evaluated based on the aforementioned scoring function. Inspired595

by an evolutionary computing perspective, a randomizing router was imple-

mented including the attributes that are part of the scoring function except the

interaction with other traffic, which is, by definition, simulation-emergent and

thus unknown to the router. It is discussed why this approach is both feasible in

terms of generating suitable routing results and also consistent with the concept600

of MATSim’s co-evolutionary simulation approach.
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The specific values of the marginal utilities of infrastructure attributes and

choice-relevant events have been informed by empirical literature values and

described.

Using an illustrative scenario, it was shown that the amendments for bicycle605

traffic introduced in this study lead to reasonable and expected results. Real-

world transport simulation scenarios should become more realistic when the new

methods are applied to them.

Similar to those attributes that are already included, also additional at-

tributes mentioned in section 2, e.g. bus stops, parking facilities, and junctions610

can be included if desired. It seems feasible that these attributes can also be

sourced from OSM data.

Furthermore, and probably more interesting from the perspective of an

agent-based simulation framework, person- and/or vehicle-specific character-

istics can be considered in the scoring function. For instance, researchers found615

that women tend to avoid slopes more strongly than men and commuters stick

more strongly to the shortest route (cf. section 2). Both phenomena can be

modeled in MATSim, the former by assigning demographics to agents and ad-

justing the scoring function based on this, the latter by observing the sequence

of activities in the daily plans of agents and making decisions dependent on620

subsequent activities (e.g. work vs. leisure activities). The technical implemen-

tation of this can be oriented on the adjustment of the scoring process for the

interaction of cyclists with motorized traffic shown in this paper.

Similarly, it is possible to further distinguish between different types of bi-

cycles (e.g. race bicycles vs. beach cruisers) with their typical maximum speeds.625

Since only openly accessible input data have been used, the approach is

reproducible and easy to transfer to other spatial contexts. Future studies to

use the described approaches for policy evaluation studies are underway.
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