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Abstract

Dynamic ride hailing with passenger pooling has become a popular form of urban transport and is a
growing sector around the globe. The area where these services operate is often limited to densely
populated inner city districts, whereas non-pooled options are often available in larger areas. In
this paper, we introduce a simulation-based methodology that allows to optimize the service area
of a ride hailing service using an agent-based simulation and apply it to the taxi demand of Berlin,
Germany. Three different criteria are used for the optimization, which take the average vehicle
occupancy, the revenues collected per area or both into account. The results show that for the
given parameters a service area that focuses on an extended central area and some areas around
may be profit-maximizing for operators.
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INTRODUCTION
Dynamic ride-hailing (sometimes also referred to as ride-sharing) services have been growing
world-wide in the last years, disrupting taxi markets and both the private and public transport sector
all over the globe. More recently, ride-sharing operators, or transportation network companies
(TNCs), have started pooling customers with similar headings (1, 2). On one hand these pooled
services offer generally lower fares to customers, who may have to take accept a certain detour and
discomfort. On the other hand, pooling may reduce the overall vehicle miles traveled (VMT) and
thus mitigate negative congestion and environmental effects arising from additional empty mileage
of ride-sharing vehicles. With possible future fleets of shared autonomous vehicles (SAVs) offering
taxi like services, the additional VMT may lead to a substantial increase in congestion (3) and
pooling rides may be one way out of this.

Generally, (profit-oriented) TNCs offer their pooled services in smaller, often more densely
populated areas than their non-pooled services. The availability of pooled services in an area may
also depend on the time of day, vehicle availability or other factors. In this paper, we propose an
agent-based simulation approach to determine in which areas offering pooled rides is economically
justified. The approach is applied to a real-world demand in Berlin, Germany.

STATE OF THE ART
While pooled rides in dynamic ride-hailing applications are still a relatively new idea, the general
concept of sharing a taxi or limousine with a third party is older. Traditionally, these ran along
(somewhat flexible) routes, which allows for an easy matching of passengers. Examples for such
systems exist, e.g, in Santiago de Chile, South Africa, several post-soviet countries and the Arabic
world (4, ch. 2). In the United States, the majority of these jitney services were banned in the
1910’s, mainly because they were seen as an unwanted competition to streetcar operators. Since
then, shared rides have been mainly used for special user groups (such as para-transit for the
disabled) or as shuttle services to connect, e.g., with airports. Somewhat related to them, demand-
responsive transport systems (DRT) have filled a niche in more rural areas, especially in Europe.
Dynamic pooled ride-hailing could only develop thanks to an increased connectivity and smart-
phone usage both on the customer’s and dispatcher’s side.

In science, pooling in dynamic ride-hailing has been looked at mainly from the algorithmic
side of matching customers. This problem is usually dealt with by means of various heuristic
methods (5, 6, 7) that are typically paired with a transport simulation software. Other questions,
such as the willingness of customers to accept pooled rides and the acceptance of detours have
been discussed mainly in the context of car-pooling, rather than ride-hailing. Some results are
likely to be similar, such as the general acceptance for detours or the perception of travel time,
while constraints to timing and loss of flexibility (8) would not apply to ride-hailing.

A methodology to evaluate service areas and their importance to operators using geograph-
ically weighted regression models was presented for free-floating car-sharing services in Berlin
(9), essentially predicting profitable areas based on historical data and areas of interest. In a pre-
vious simulation study focusing on the possible impact of (non)-pooled SAVs, we have found a
significantly higher share of empty mileage in areas with low demand (10).

In real-world applications, TNCs have been constantly adapting their pooled services,
partly modifying them in a field study like style in some areas at first and rolling it out on a larger
scale afterwards. For example, when Uber started offering pooled services, the financial risk for a
match was on the customer’s side, who only received a significant discount on his fare if a second



Bischoff, Maciejewski, Kaddoura and Nagel 2

customer boarded the ride. Since then, this has been transformed to a flat-fare system with a guar-
anteed arrival time window, where the match-finding risk is on the operator’s side and prices are
dynamically adjusted depending on the likelihood of finding other customers along the route (11).
Furthermore, special discounts or flat fares may be offered for travel within some high-density
zones, where the likelihood of pooling is overall higher (12). Lyft is operating according to similar
procedures. This makes pooled TNCs a direct opponent of public transport in many markets(13),
though in some cities co-operations between both have evolved.

A large service area paired with a small fleet was one of the reasons leading to the economic
failure of Kutsuplus, a DRT system in Helsinki, Finland (14), which was canceled after less than
two years of service after a well-observed start. This stresses out the importance of choosing an
economically sustainable business area.

METHODOLOGY
In this study, we use an iterative, simulation-based approach to evaluate the potential of zones in a
service area for a dynamic, pooled ride-hailing service.

Simulation framework
We chose MATSim (Multi-Agent Transport Simulation) (15) as the simulation software to work
with. MATSim is an activity-based and dynamic transport model. It is available as open source
software and written in JAVA and offers many plug-in points for an easy extension of its function-
ality.

Transport simulation
The demand for transport is modeled with individual agents. Each agent holds one or more plans
which describe the (often) daily activity schedule as well as the travel in between activities by
different transport modes. Initial plans have to be provided and these may be modified during the
process of demand adaptation to supply. The demand adaptation is based on an evolutionary itera-
tive approach in three steps: (1) travel plans are executed (mobility simulation with a mesoscopic
queue-based traffic flow model), (2) the executed plans are scored (evaluation) and (3) plans are
modified (learning). This process is repeated for several iterations and typically results in an ap-
proximate stochastic user equilibrium (16). A detailed description of the simulation framework is
provided in Raney and Nagel (17). The iterative process is also depicted in the center of Fig. 1.

Simulation of dynamic pooled ride-hailing
The simulation of dynamic transport modes, such as taxi, DRT or SAVs is based on MATSim’s
extension for dynamic vehicle routing problems (DVRP) (18, 19). It consists of a framework for
an on-line dispatch of one or several fleets of vehicles while the mobility simulation is running. In
this paper, we are using the DRT extension, which may be used for both pooled taxi rides or typical
demand responsive transport use cases. When a ride request reaches the dispatcher, it is assigned
to such a vehicle that an increase in the overall time-wise detour is lowest. This happens under
the condition that (1) the travel times for the passengers currently in the vehicle or awaiting it and
the new customer do not increase beyond specified thresholds and that (2) the expected boarding
times for the awaiting customers and the new one are within a requested time frame. Should no
suitable vehicle be available, or the request be deemed invalid because its start or end location is
outside the service area, the request is rejected. A more detailed description of the extension and
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FIGURE 1 Schematic overview of the simulation cycles, extended from (18)

its underlying algorithm is available (5). In Fig. 1, the role of DRT extension is depicted on the left
side.

Service area adaption
In order to provide adaptability on the operator’s side, the existing integration of the multi-iterative
simulation in MATSim and the on-line vehicle dispatch provided by DVRP has been extended
by a third component that adjusts the service area a ride-hailing operator serves. To achieve this,
an initial service area is defined by a set of similarly sized shapes. For each zone, several spatial
optimization criteria are collected within each iteration of a MATSim run. After each n-th iteration,
these criteria are evaluated and a certain number m of zones performing worst are removed. The
new, smaller service area is then used for the next n iterations, and the process of evaluation and
adaptation is repeated (as depicted on the right side in Fig. 1). Depending on the fleet used and
the spatial distribution of requests, this will, after a certain number of iterations, lead to a service
area where, e.g., the operator profit can be maximized. Since the fleet size is kept fixed throughout
all iterations, a continuation of the adaptation process will further reduce the service area, but lead
to a decrease in profits, as the fleet is too big. There is no adaption on the demand side between
iterations.

Optimization criteria
In this study, we use three different optimization criteria:

1. The contribution of each zone to the operator’s total revenue. This can be defined as the
half of the sum of all revenues generated by all trips starting or ending in zone i (trips
starting and ending in zone i are counted twice into the same zone).

Ri (1)

2. The average occupancy of all vehicles passing through a zone, defined by the person
miles traveled in a zone i (PMT i)1 and the overall vehicle miles traveled within that

1The driver of the vehicle does not count as a person. This means, an empty driving vehicle has an occupancy of
zero.
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zone (VMT i).

ρi =
PMT i

VMT i

(2)

3. The multiplication of 1. and 2.

Pi = ρi ·Ri (3)

A sole optimization based on revenue will not take operator costs into account and may lead to
zones being served which attract long trips. These may mostly be non-pooled (due to the dis-
tance traveled) and a vehicle may need to drive empty for a long time afterwards to reach the next
customer. Both aspects may or may not be part of the fares charged and thus the revenue collec-
tion. An optimization based on the average zonal vehicle occupancy assumes that a higher vehicle
occupancy generates a higher overall profit. This, once more, depends on the fares charged to
customers. A combination of both parameters may balance somewhat in between both.

DEMAND ESTIMATION
The demand used in this paper is based on GPS trajectories and status messages collected by the
biggest radio taxi dispatch center in Berlin, Germany. The dataset covers roughly half of the city’s
fleet of 8,000 vehicles and covers several weeks in spring 2013 and 2014. During one week, more
than 200,000 rides were registered (see Fig. 2). The average trip distance is around 7 km, or 4.3 mi.
From Monday to Friday, there is a considerable morning peak around 8 am and an afternoon peak
which is followed by a strong evening demand on Fridays. The weekly absolute demand peak can
be observed during Saturday nights, while there is less demand on Sundays. This demand pattern
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FIGURE 3 Taxi trip start locations during a Saturday night

for taxi rides is qualitatively similar to the one observed in other cities, including New York City
(20). A detailed description of the taxi market, including a spatial analysis, is also available (21).

The overall taxi market in Berlin is strongly fragmented – the majority of taxi companies
owns only one or two vehicles and there are only few companies with a fleet of 50 or more vehicles.
While there are several radio dispatch agencies, each operator is working for himself and there is
no centralized dispatch optimization.

In 2017, there are three ride hailing operators active in Berlin, but the legislative restrictions
are high (e.g., fleets are often owned by the operator rather than the drivers) and the fleets, service
areas and operation times in use are small, so taxis remain the pre-dominant provider. However,
legislation is undergoing changes, that may influence the whole sector.

The focus in this paper lies on the demand peak during Saturday nights between 6 pm
and 5 am on Sunday morning (marked in orange in Fig. 2), because this is the time where the
willingness to pool rides among taxi users is likely to be highest as many trips are rather leisure-
oriented. Demand during this time of week is generally originating from city center locations (and
also from Tegel Airport until its closure at 11 pm). Fig. 3 provides an overview of the demand
distribution. Since the trajectory data covers only half of the fleet, the overall demand used for
simulation purposes is scaled up accordingly. With the focus of this study being a service area
optimization for one single operator, we assume that a random 10 % of all requests, or around 3,000
trips in absolute numbers, per iteration are submitted to and potentially served by this operator.
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SIMULATION SETUP
Supply
A fleet of 50 vehicles with a capacity of 3 is used in our simulations. These are initially distributed
throughout at popular taxi locations within the city center. If a vehicle is unassigned, it does not
return to a rank but remains idle at its last location until a the vehicle is dispatched again. Vehicles
are available from 6 pm to 5 am the following day. Breaks of drivers are not modeled. Operator
costs are assumed to be a fixed 150 EUR per day and vehicle. Vehicle costs were assumed to be
~50 EUR and driver costs ~100 EUR. The additional cost per km is assumed to be 0.30 EUR.

Fare structure and operator profit
We assume a fixed fare based on the direct (unpooled) distance of a trip and assume a fare of 50 %
of a regular taxi trip. This means a base fare of 1.95 EUR, and a de-grading distance fare of 1 EUR
per km for the first 7 km and 0.75 per km thereafter. The operator profit Π can be calculated by
summing up all revenues and deducting the sum of costs.

Dispatch
A vehicle may be dispatched to a request, if the following thresholds are kept for both the new
request and all passengers currently on board or awaiting the vehicle: (a) The overall travel time
detour of the trip, including the initial wait time, is below 50 % plus seven minute (to allow a
pooling also on short trips). (b) The expected maximum wait time is below seven minutes. These
parameters were found to be well-working in densely populated areas (5) and warrant a good
service quality.

Zonal system and optimization
Initially, we place a grid of 567 hexagons with a radius of 1.5 km (or 0.93 mi) over Berlin. After
iteration 10, all zones are removed where not a single trip has started or ended in the preceding
iterations. This removes, e.g. water, forest or industrial areas. For the optimization process, as
described above, n = 10 and m = 10 was set, i.e., after each 10th iteration 10 worst performing
zones were removed. This continues as long as there are more than 2 ·n = 20 zones left to remove
and ends after 360 iterations.

RESULTS
For the chosen set of parameters and fleet, we evaluate the average operator profit per each n
iterations (Πmean). The highest operator profits are experienced when using the factor Pi as an
optimization criterion, though the differences to occupancy (ρi) or zonal revenue (Ri) are slim.

Operator Revenues and Profit
The initial operator profit without any service area restrictions is around 395 EUR for the whole
fleet. Removal of zones for all optimization criteria leads to an increased Πmean, as Fig. 4 reveals.
A pure optimization based on revenues per zone performs somewhat worse than the other two
criteria. Πmean is the highest for iterations 240–250, where it is the P-oriented optimization with
1,698 EUR and 1,615 EUR for the occupancy-based ρ-optimization. For the revenue-based (i.e.
R-oriented) optimization, it is the highest in iterations 260–270 with 1,508 EUR. A further removal
of zones leads to a reduction in operator profit due to an over-dimensioned fleet. From iteration
310 (for ρ) or 330 (for R and P), the operator starts loosing money. Table 1 provides an overview
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FIGURE 4 Average operator profit per n-iterations

TABLE 1 Average performance indicators for different simulation setups
Criterion Iterations Trips Revenue Cost Overall Distance Empty Distance

[EUR] [EUR] [km / vehicle] [km / vehicle]

R 260-270 1808 12 479 10 971 231 49
ρ 240-250 1820 12 656 11 041 236 50
P 240-250 1840 12 773 11 075 238 50

of the average performance indicators for all three optimization criteria for those iterations with
the highest profit. Both revenue, absolute number of trips and the cost incurred are the highest
for trips using the ρ-optimization of the service area. Also the vehicle utilization is the highest,
with an average of 238 km per vehicle and shift. This value seems feasible, though it is more than
what ordinary taxis drive in the same time (due to a general oversupply of taxis in Berlin). The
values for the simulation runs using the other optimization criteria are somewhat similar, with the
values for the revenue-based R-optimization being constantly below those of the occupancy-based
ρ-optimization of the service area.

Service area
Fig. 5 shows the resulting service area (green) for using each of the optimization criteria. In each
case, the city center, defined as the inner circle overground railway, is covered in full. Also the area
southwest of the city center (districts of Wilmersdorf, Steglitz and parts of Zehlendorf ) are covered
in all cases. For the revenue-based optimization (top left in the figure), only the core area in the
center is contiguous, while there are some unserved areas directly around it. Three outlying zones
to the west, east and south mark spots where there is a certain amount of revenue, which may be a
result of longer trips ending in these residential areas.
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FIGURE 5 Resulting service area for revenue-based (top left), occupancy-based (top right)
and performance-based optimization.

Using the optimization approach based on occupancy, the resulting area is contiguous (with
one exception). The service area now also covers the link leading to Spandau, a well-populated
sub-center in the west of the area. Further outlying areas are not covered, indicating that vehicles
traveling there are not usually occupied by more than one person.

Using the factor of both in the P-optimization, the resulting area is overall very similar to
the occupancy-based approach. However, the area is cut somewhat differently especially in the
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west and southwest. This may, however, result from stochastic effects.
A look at the service area remaining in the last iterations (marked in blue), however, reveals

a similar service area for both the P-based and revenue-based optimization approach. This area
contains both the eastern and western city center cores around Alexanderplatz and Zoologischer
Garten as well as classical nightlife hot spots in the south east of the center. The occupancy-based
approach results cuts the zones differently and the resulting areas form a more compact area. This
is generating less profit, as Fig. 4 reveals for the last iterations.

Quite notably, the maximum profit service area overlaps to a large extent with the one
where other operators of mobility-on-demand services, such as Free-Floating car sharing and bike
sharing companies, offer their service.

CONCLUSION
In this paper, we were able to demonstrate a methodology to optimize the business area for a
dynamic and pooled ride-hailing service. The iterative approach allows a specific and modifiable
definition of service and optimization criteria. The selected use case for the city of Berlin is
of special interest, as ride-hailing is still heavily discussed in Germany and an efficient pooling
of passengers may increase the overall efficiency of city traffic and thus the acceptance of these
services as a whole. In the illustrative use case described, the profit of a ride-hailing operator
operating with a fixed fleet size during the week’s busiest time, may be maximized by focusing its
service area in an extended area around the city center. In this case, the choice of an optimization
criterion that takes both revenues and the occupancy of vehicles into account scores maximizes
profits.

The use case presented here has some limitations. Namely, prices for pooled ride-hailing
options are usually very dynamic and take into account the likelihood of matching a customer
with another given the route and time of day. This price prediction influences both the ridership
(who may opt to use a different mode instead) and the profitabilities of zones and should be taken
into account at a later stage. Furthermore, modeling the choice between pooled and non-pooled
options is another interesting field that could be looked at. Finally, it may be interesting to use the
optimization framework in the context of future fleets of shared and pooled autonomous vehicles.
In this field, an optimization based on the system welfare that takes the user benefits into account
may provide an insight on where an operation may not be profitable for operators, but socially
beneficial and should possibly be supported in some way.
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