
submitted to mobil.TUM 2018 ”Urban Mobility - Shaping the Future Together” - International Scientific Conference
on Mobility and Transport, conference proceedings to be published in Transportation Research Procedia

Should autonomous shared taxis replace buses?
A simulation study

Gregor Leich*,1, Joschka Bischoff1

1 Technische Universität Berlin
Department of Transportation System Planning and Telematics

Salzufer 17–19; 10587 Berlin; Germany

* Corresponding author (e-mail: leich@vsp.tu-berlin.de; tel.: +49-30-314-28666)

May 2, 2018

The introduction of shared autonomous vehicles (SAV) will eliminate driver-related costs and thereby
allow to enhance conventional public transit systems with numerous small SAVs offering flexible ridesharing-
like feeder services. These demand-responsive services could replace conventional bus lines limited by their
fixed routes and their fixed schedules. This simulation study explores the potential of replacing conventional
bus lines with shared autonomous vehicles in a suburban area of Berlin. Several scenarios with different fleet
sizes and vehicle sizes are simulated using the multi agent transport simulation MATSim. The simulation
suggests for all evaluated scenarios higher operating costs and only slight travel time savings in comparison
to conventional buses. Door-to-door service allows for significant reductions in average walk time, but
causes numerous detours which consume a high share of the time gained. A fleet of 150 SAVs with 4 seats
each seemed appropriate for the simulated area with approximately 24000 inhabitants.

1 Introduction

Transportation network companies like Uber have appeared on the roads only a few years ago and yet are already
developing into increasingly important competitors to conventional public transport such as buses. Schaller (2017)
analyzed the example of New York City where buses and even subways started to loose more and more passengers
whereas ride services (ride-hailing, conventional taxis and similar) more than compensate for this and are growing
faster than all other modes included in the statistic. In a survey by Clewlow and Mishra (2017) ride-hailing users
report a decrease in their public transit use with a 6 % reduction for bus services and a 3 % reduction for light
rail services. However, they also report a 3 % increase in heavy rail usage. So ridesharing services compete with
conventional public transit, but can also complement it. Some transit authorities, e.g. SEPTA (2016), partnered with
Uber to offer discounts for last mile rides from and to their train stations. The Canadian city of Innisfil made headlines
(see Smith (2017)) with the more radical decision to partner with Uber rather than introducing a conventional bus
system at all.

Ride-hailing apps and ridesharing allow for a more flexible service than conventional bus lines, because they can react
to the actual demand instead of operating on fixed routes and fixed schedules. So they can potentially offer a more
attractive service for the customer by departing closer to where and when the passenger wants. In addition to that,
they eliminate operating costs for scheduled services which eventually run empty, because no passenger chose to take
these services. Furthermore, they allow for door-to-door service which is more attractive and removes the walk time
to access the next bus stop. According to the survey by Clewlow and Mishra (2017), having less than enough transit
stops is the second most important reason for substituting ride-hailing for public transit.

In order to realize the full potential of ridesharing-like services as part of a public transit system, ridesharing-like
services will likely need to use many small vehicles instead of a few large conventional buses, because the more vehicles
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there are, the more frequent the service they offer can be. A large barrier to the use of more vehicles are driver-related
costs which according to Frank et al. (2008) amount to about 40 % of the sum of all operating and investment costs for
a conventional bus in Germany. The introduction of shared autonomous vehicles (SAVs) in the future will remove all
driver-related costs and thus allow to replace each large conventional bus with many smaller vehicles which can offer
a more frequent service without the tremendous increase in driver-related costs this would cause today. Furthermore,
prices for ride-hailing services are likely to fall making them an even more attractive competitor for passengers.

So should transit authorities replace conventional bus lines with ride-hailing services operated by future autonomous
shared taxis in some areas? How would travel times and operation costs change? These questions are to be examined
in a case study for a low-density suburban area in Berlin using the multi agent transport simulation MATSim.

2 Simulation model

The aim of the study is to compare a base case scenario with conventional bus lines to several scenarios in which
these bus lines were replaced by autonomous shared taxis of varying fleet sizes and capacities per vehicle. The multi
agent transport simulation MATSim (Horni et al. (2016)) was chosen because it is capable of simulating large-scale
scenarios at sufficiently high computing speeds and provides software modules for shared taxis and intermodal trips.
MATSim consists of a common base and several optional extensions which are called “contributions”. Three of these
extensions were used in the study: The AV-Contribution (AV for “autonomous vehicles”) was employed to calculate
intermodal routes combining conventional public transit and SAVs as a feeder service. In order to simulate ride-hailing
and ridesharing with SAVs the DRT- and DVRP-Contributions were used (DRT for “demand-responsive transport”
and DVRP for “dynamic vehicle routing problem”).

MATSim is based on the simulation of agents and their daily plans which consist of activities like home or work
and trips between their activity locations. Before each simulated day, some agents try to improve their plans, e.g.
by selecting a different route or modifying activity start and end times. The resulting plans are then simulated and
scored based on their performance before the next iteration starts and plans are modified and simulated again. Several
transport modes were included in the simulation. However, mode choice was fixed and shared taxis were handled as a
part of the public transport system. Therefore, only agents who had already been using public transport before could
use shared taxis (as well as normal buses and trains). Furthermore, the same fare system applies to shared taxis and
public transit and there is no competition with potential other ride-hailing operators.

2.1 Intermodal router

The AV-Contribution comes with an intermodal router, which allows to combine a public transit route with other
modes to access the first transit stop and egress from the last transit stop. It is not a full intermodal router, as it
does not consider trips with other modes between two public transit rides, such as a bus-bike-train trip. Access and
egress modes are selected by beeline distance. For this study the so-called “flexible style” for access/egress mode
choice was selected. Up to a beeline distance of 300 m between activity location and transit stop the router always
assumes the mode “transit walk”, because due to the wait time for a shared taxi it seems unlikely that using a taxi
has significant advantages for the passenger which could justify the additional expense for the shared taxi operator
and possible detours for other passengers of that shared taxi. For a beeline distance between 300 m and 1 000 m the
router selects by random either “drt”, i.e. shared taxi, or “transit walk”. If the router is called for the same agent
again in following iterations, it selects again by random one of these two modes. Thus, it implements mode choice for
access and egress legs only. For distances above 1 000 m the router always assigns the mode “drt” as passengers will
likely not accept a long walk if a faster and more comfortable alternative is available.

In order to restrict the operation area of shared taxis, the intermodal router was modified to assign the mode “drt”
only to access and egress legs whose origin and destination are located inside the designated operation area, so no
agent has a route which asks for shared taxis outside the operation area. If no plausible transit route could be found,
the router returns a direct “transit walk” respectively “drt” leg from trip origin to trip destination. As the router
calculates travel time and cost of access and egress legs based on beeline distances only, some bus stops inaccessible
due to rivers and lakes had to be excluded manually as access and egress stops for activity locations inside the study
area (see bus line 136 in figure 2).

Furthermore, given a certain set of departure time, trip origin and trip destination the router always returned the
same route. This turned out to be a major issue, because the router estimates access leg travel times based on the
beeline distance and a fixed mode speed. However, shared taxi legs have varying wait and in-vehicle travel times,
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so many agents missed connecting trains they planned to take. This issue is aggrevated by the fact that the study
area has two heavy rail lines to the city center. Figure 2 shows that line S25 (shown in green) has better accessible
stations than line U6 (shown in blue), so the router mostly returned routes using line S25. Nevertheless, line U6 offers
a far more frequent service whereas missing a S25 train causes a 20 min wait. This lead to increased public transit
wait times despite less public transit legs in the first preliminary simulation runs. In order to address this issue, the
router was altered to choose by random at each routing request whether to include or exclude all three concerned S25
stations in the study area during routing. Thus, over the course of several iterations with several routing request the
agent will test routes with and without using the three S25 stations.

2.2 Simulation of shared taxis

The shared taxis are simulated using the DRT-Contribution introduced in Bischoff et al. (2017). For the vehicle routing
and assignment the DRT-Contribution uses the DVRP-Contribution presented in Maciejewski (2016) as backend.
Shared taxis offer door-to-door service. Agents request their shared taxi ride after finishing the last activity before the
trip, i.e. without pre-booking (Bischoff et al. (2017)). Ride requests are only served if a shared taxi can serve them
within certain time constraints. These consist of a maximum wait time to departure at the requested journey origin
and a maximum total travel time (the sum of wait and travel time) (Bischoff et al. (2017)). Both time constraints
must be satisfied for the requested ride and for all ride requests already assigned to the shared taxi (Bischoff et al.
(2017)). That means additional travel time caused by detours to serve the new ride request may not violate the time
constraints of ride requests already scheduled. The requested ride is assigned to the vehicle which can serve it with
the least additional operation time needed to serve the requested ride (Bischoff et al. (2017)).

Otherwise, if no taxi can serve the ride without exceeding the above mentioned constraints, the ride request is rejected
(Bischoff et al. (2017)). In the current implementation, the corresponding agent will nevertheless wait for the shared
taxi to arrive. Since no taxi was scheduled to serve the customer, he will wait until the iteration ends. That means he
is not able to continue his daily plan and will not execute any activity or trip scheduled after the shared taxi ride. This
poses some issues for analysis, because no travel time can be calculated for the agent and different agents are affected
in different scenarios. Therefore, all trips which were not completed in all scenarios (about 8.6 % of all completed
trips) were excluded from analysis of entire trip travel times in section 4.2. Thus, it can be avoided that e.g. very
long trips with high shared taxi travel times increase average trip travel times of scenarios with sufficient vehicle fleets
whereas the rejection of these ride requests in other scenarios decreases the average trip travel times in these other
scenarios.

The maximum permissible shared taxi wait and travel time sum trmax is calculated based on the travel time for a
direct ride trdirect (without wait and detours) and two parameters α and β (Bischoff et al. (2017)):

trmax = α ∗ trdirect + β (1)

The selection of the time constraint parameters α, β and maximum wait time twait
max has a significant influence on the

average travel times and the share of rejected ride requests as test runs in Bischoff et al. (2017) show. Based on their
results several combinations were tested for the data set of this study. Since the same set of time constraint parameters
was to be used for all scenarios, all test runs were conducted for a fleet of 200 shared taxis with 4 seats per vehicle. α
values other than 1.5 were not tested, because these lead to higher travel times in Bischoff et al. (2017) and because
of the high computation time necessary for more test runs.

Table 1: Selection of time constraint parameters α, β and twait
max.

α β twait
max twait tr ddirect ddetour dT dU ρ

[mm:ss] [mm:ss] [mm:ss] [mm:ss] [km] [km] [km] [km]
1.5 10:00 10:00 06:18 17:34 4.87 1.21 49 715 105 170 0.05
1.5 10:00 12:00 07:26 18:28 4.94 1.08 54 809 109 795 0.01
1.5 12:00 12:00 07:48 19:30 4.95 1.36 53 090 114 739 0.01
1.5 15:00 15:00 10:02 22:21 4.94 1.56 52 808 118 462 0.01

Table 1 depicts a significant increase in average total travel times tr (sum of wait and in vehicle travel time) and
average wait times twait with increasing β and twait

max values, although demand and vehicle fleet were equal in all test
runs. However, the share of rejected ride requests ρ is much larger in the uppermost test run than in all other test runs,
that means less requests were actually served enabling potentially better service quality for the remaining requests.
This might explain the lower average direct distance between request origin and destination ddirect and the lower
distance driven dT . More generous time constraints β and twait

max also lead as expected to more bundling of rides which
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Figure 1: location of the study area (blue) in Berlin.

can be seen in the decreasing distance driven dT despite increasing revenue distance dU . The rise in revenue distance
despite stable demand is partly caused by rising detour distances ddetour.

A high rejection rate ρ could put at risk the acceptance of the new shared taxis as a replacement of conventional bus
lines. Therefore no β and twait

max lower than 10 min were tested. Instead the highlighted parameter set was selected
for all following simulation runs since it delivers the lowest travel times at an acceptable rejection rate. A possible
explaination why tighter time constraints could not be used is the lack of a relocation strategy. The shared taxi
operation area is too large to reach every possible pick-up location from every possible vehicle location in 10 min or
less. At the beginning all SAVs were distributed evenly over the operation area, but with a largely monodirectional
demand in the morning rush hour it could happen that all empty SAVs accumulate at the train stations in the southeast
of the operation area whereas all vehicles in other areas are too busy to accept new ride requests. Consequently, the
fleet would be unable to serve ride requests in the northwest in time.

3 Study area

The simulation is based on a real-world data set for Berlin in use at Transport System Planning and Transport
Telematics department of TU Berlin. It includes a 100 % sample of a synthetic population of Berlin and Brandenburg,
a road and rail network and a public transit schedule.

The study area shown in figure 1 is situated in the borough of Berlin-Reinickendorf and consists of Heiligensee and
Konradshöhe districts and some mostly forest areas of Tegel district excluding the center of Tegel. It contains mostly
low density residential areas. Figure 2 depicts the public transit lines in the study area. There are four bus lines
operating in the study area (124, 133, 222 and 324) with headways of 10-30 min during rush hour and 20-30 min
during the rest of the day. Most agents use these buses as a feeder system to reach Tegel station where the heavy rail
lines S25 and U6 connect to other parts of Berlin. In the base case the public transit schedule remained unchanged.
In all scenarios with shared taxis bus lines 124, 133 and 222 are shortened to terminate outside the study area and
bus line 324 is suspended.

Starting from the given data set all agents with activities inside the study area and all agents who pass through
the study area by car were cut out for this study. All in all, 50 000 agents (a 100 % sample) were included in the
simulation of which only about one half has activities inside the study area. All others are car drivers who were
included to provide realistic road congestion levels while passing through the study area.
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Figure 2: (a) public transit lines in the base case (background map OSM); (b) public transit lines in all other scenarios
(background map OSM).

In order to allow access and egress to two major heavy rail stations in Tegel the router uses a shared taxi operation
area slightly larger than the study area used to cut out the synthetic population. The router operation area was later
simplified to reduce computation time.

4 Results

The analysis of simulation results is divided into an isolated examination of the shared taxi legs only and an analysis
of travel times for the entire trip including all public transit and walk legs.

4.1 Shared taxi performance

Scenarios with 1, 4, 8, 12 and 20 seats per taxi vehicle were run for 101 iterations each. Despite the concentration
of transport demand at one major hub (Tegel), more than 8 seats were rarely used. Furthermore, table 2 shows that
scenarios with less than 120 vehicles had rejection rates ρ higher than 5 % no matter how many seats per vehicle
were offered. Average total travel time on shared taxis (including wait) was roughly equal for all scenarios. Neither
private taxi operation in scenario D2D 400 Cap1 (1 seat per vehicle only) nor an oversupply of vehicles in scenario
D2D 1000 Cap4 lead to an important reduction in total travel time (including wait). Analysis then focused on the
following scenarios: 120 taxis with 8 seats (D2D 120 Cap8), 150 taxis with 8 seats (D2D 150 Cap8), 150 taxis with 4
seats (D2D 150 Cap4) and 200 taxis with 4 seats (D2D 200 Cap4). These fleet dimensions allow to keep the share of
rejected ride requests at or below 5 %.

Due to the shared taxi implementation in the DRT-Contribution, travel times differ only slightly between scenarios
with different taxi fleet sizes. Larger taxi fleets reduce the number of rejected ride requests as more rides can be served
maintaining the time constraints. However, larger fleets have little influence on wait and travel times, because the
optimization algorithm tends to schedule high wait times (see 95%-percentil of wait times twait

p95 only slightly below
the maximum admissible 12 min) and high total travel times tr (sum of wait and in-vehicle travel) while trying to
minimize the time SAVs are in operation. So, whenever possible the algorithm will rather bundle ride requests together
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Table 2: Simulation results for the shared taxi legs. Scenarios selected for further analysis are highlighted.
Scenario number of seats rides twait

avg twait
p95 travg ddirect ddetour dT dU ρ

taxis per veh. served [mm:ss] [mm:ss] [mm:ss] [km] [km] [km] [km]
D2D 50 Cap20 50 20 10 109 06:59 11:43 18:10 5.18 1.21 26 724 64 623 0.35
D2D 75 Cap12 75 12 13 563 06:53 11:41 17:58 5.08 1.16 35 648 84 590 0.19
D2D 100 Cap12 100 12 15 920 06:42 11:42 17:55 4.99 1.17 41 344 98 129 0.09
D2D 100 Cap8 100 8 15 807 06:53 11:43 17:56 4.99 1.13 41 292 96 843 0.10
D2D 120 Cap8 120 8 17 151 06:50 11:40 18:05 4.96 1.18 44 684 105 268 0.05
D2D 150 Cap8 150 8 18 024 06:47 11:40 18:13 4.97 1.19 46 454 111 023 0.02
D2D 150 Cap4 150 4 17 238 07:32 11:44 18:15 4.92 1.07 51 646 103 254 0.05
D2D 200 Cap4 200 4 18 258 07:26 11:44 18:28 4.94 1.08 54 809 109 795 0.01
D2D 400 Cap1 400 1 17 214 08:42 12:08 17:40 4.94 0.00 117 546 85 115 0.05
D2D 1000 Cap4 1 000 4 18 668 05:55 11:28 17:42 4.95 1.35 49 015 117 533 0.00

in order to save vehicle operation time than provide higher service quality. This is illustrated by figure 3 which shows
a significant share of SAVs occupied by more than one passenger even in off-peak hours, e.g. at midday. Consequently
the number of vehicles in operation is reduced to just between one third and one half of the total fleet available at
midday. In scenario D2D 1000 Cap4 with 1 000 vehicles available no more than 250 are ever in operation at the same
time due to the taxi assignment algorithm.

As discussed in section 2.2, setting more restrictive time constraints reduces taxi wait and travel times only slightly
while vastly increasing the number of rejected ride requests. So given the shared taxi assignment algorithm used, there
seems to be no obvious way to significantly decrease the average shared taxi wait and travel times without putting
acceptance of shared taxis at risk by rejecting many ride requests.

4.2 Travel times for entire trips

After analyzing the shared taxi legs only, in the following the entire trips between trip origin and trip destination
shall be examined for all trips concerned by the substitution of SAVs for conventional buses, that means all completed
public transport trips originating or ending inside the study area, including trips which do not include shared taxi
legs. Based on agent id and the position of the trip in the agent’s daily plan, all trips were assigned a unique identifier.
Since the activities, their locations and their order did not change during simulation, each of these unique trips has
the same origin, the same destination and a roughly similar departure time in all scenarios. So there is one execution
of the very same trip per scenario, unless the agent got stuck e.g. because his shared taxi request was rejected. Trips
which were not completed in at least one of the scenarios to be evaluated were excluded from analysis as described in
section 2.1.

18 761 trips completed in each scenario remained in the analysis. Depending on the shared taxi fleet scenario between
15 602 and 15 749 of these trips (0 in the base case) include at least one shared taxi leg and between 13 936 and
13 965 of these trips (16 301 in the base case) include at least one public transit leg. This means about one quarter
of all completed trips does not include public transit, because there was no suitable public transit service available,
e.g. because the trip originates and ends inside the shared taxi operation area where conventional public transit was
mostly removed.

Figure 4 shows that in comparison to the base case without shared taxis the average total trip travel time from origin
to destination is reduced from about 53 min by less than 2 min. The average walk time decreases by 8 min and the
time spent waiting for or travelling on buses or trains is reduced by 2 respectively 7 min, but shared taxi wait times
of about 6 min and travel times of about 9 min partly make up for this. The shared taxi wait times and travel times
do not equal the values given in table 2, because the average illustrated in figure 4 includes trips without shared taxi
legs which lower the average values. Total time spent waiting for and travelling on public transit and shared taxis
increases in every scenario in respect to the base case. This means the slight reduction in trip travel time is based only
on the decrease in walk time and agents with trips originating or terminating right next to existing bus stops might
even experience higher average trip travel times.

One basic assumption before simulations were started was that shared taxis allow to reduce trip travel time spent
between two activity locations because door-to-door operation reduces walk distances and departure times can be
chosen more flexibly. However, it seems that door-to-door operation also causes longer detours for shared rides which
contribute to a noticeable increase in total time spent travelling in public transit and shared taxis of about 2 min.

Additionally, the decrease in public transit wait time is lower than one might expect, probably because the lack of
any pre-booking feature made departure times even more unpredictable, so connecting trains were often missed. The
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Figure 3: vehicle occupancy: (a) D2D 120 Cap8; (b) D2D 150 Cap8; (c) D2D 150 Cap4; (d) D2D 200 Cap4.

latter problem is less visible, because in respect to the base case a higher share of agents going to the city center used
the more frequent U6 heavy rail line instead of the less frequent S25, but actually the preference for the more frequent
rail line could also be a result of less predictable arrival times. Before the router was altered to create more variability
(see section 2.1) more agents chose S25 compared to the base case and there was a significant increase in public transit
wait time despite less public transit boardings although shared taxis allow for a more flexible departure time choice
than conventional bus lines. Whereas conventional bus lines with fixed schedules can be planned to provide transfer to
a defined connecting train (and the connecting train might even wait for the bus in some cases), the time constraints
for shared taxis allow for a wide range of departure and arrival times. For a direct travel time of 10 min and the
parameters α = 1.5 and β = 10 min used for this study, the admissible arrival time has a range of 15 min (see section
2.2) which almost equals the headway of line S25. So the agent would have to start 15 min prior to the departure time
necessary for a direct trip and will most likely often end up waiting at the train station for some minutes or more.
The practical range might be smaller in many cases, however the shared taxi scheduling adds an additional layer of
uncertainty which conventional buses do not have.

5 Cost-benefit evaluation

Cost calculations for autonomous vehicles are subject to serious uncertainties as autonomous vehicles have not reached
series production yet. Additionally, shared autonomous vehicles replacing current wheelchair accessible buses would
have to cater for unaccompanied passengers with disabilities whereas today’s taxi vehicles are mostly not suited for
wheelchair users at all. Costs for future fuels or batteries and propulsion systems and future interest rates remain in
doubt, too.

Therefore, costs were calculated based on existing fossil-fuel-powered taxis and articulated buses omitting all driver-
related costs. The number of buses which could be saved by shortening bus lines as explained in section 3 was
estimated at 10 articulated buses. A maintenance reserve of 10 % was added to the number of buses respectively
SAVs and the total distance driven was split evenly among all vehicles. The calculations assume an interest rate of
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Figure 4: Average travel times for the entire trips including walk and public transit legs and their components [mm:ss].
“drt” and “pt” denote shared taxi respectively public transit legs.

3 %, a life span of 5 years for SAV and 12 years for articulated buses, purchasing prices of 28 211.75 e for a 8-seat
SAV, 18 845 e for a 4-seat SAV and 321 000 e for an articulated bus. Bus capital costs (for the vehicle purchase)
and operation costs were calculated according to Frank et al. (2008) whereas operation cost for SAVs is based on data
by Autokostencheck (2017). These operating and capital costs were summed up to annual costs presented in table 3.
The detailed calculation can be found in Leich (2017).

Table 3: Costs and benefits per scenario. “∆costs” is the difference between shared taxi costs and conventional bus
costs saved. “Uscenario-∆costs” is the benefit-cost difference.

Scenario costs ∆costs trtrip,day ∆trtot,year requests Ur Ub Uscenario Uscenario-∆costs

[e/a] [e/a] [h/day] [h/a] rejected [e/a] [e/a] [e/a] [e/a]
D2D 120 Cap8 2 645 698 507 169 16 268 -166 258 859 803 024 -302 875 500 149 -7 020
D2D 150 Cap8 2 980 258 841 729 16 153 -208 287 324 1 006 027 -114 239 891 788 50 059
D2D 150 Cap4 2 235 897 97 368 16 257 -170 017 825 821 182 -290 887 530 295 432 927
D2D 200 Cap4 2 621 056 482 527 16 192 -194 045 212 937 237 -74 749 862 488 379 961
base case 2 138 529 / 16 723 / / / / / /

Despite the lower degree of capacity utilization, driverless articulated buses on conventional bus lines would still be
cheaper to run than driverless demand-responsive shared taxis. Replacing conventional bus lines, cost increases by
5 % for 150 shared taxis with 4 seats or 39 % for 150 shared taxis with 8 seats. However, the current budget allows for
conventional buses and driver-related costs, so the driver-related costs saved by automation would probably allow to
cover the additional expense for shared taxi operation. Nevertheless, it is not clear whether subsidies and fares would
remain on current levels, if automation allows for similar service levels at reduced costs. There might be political
pressure to cut subsidies or to increase fares for the more comfortable door-to-door shared taxi service. The latter
could cause controversy as poor people would be left without any more affordable alternative.

For the cost-benefit evaluation, travel time reductions were considered as benefits Ur. Rejected ride requests were taken
into account as a 12 min travel time increase (maximum permissible wait time was 12 min) stated as (negative) benefit
U b in table 3. From the resulting benefit per scenario Uscenario the increase in costs (∆costs) is substracted to obtain
benefit-cost differences. Only the two scenarios with 150 respectively 200 taxis with 4 seats each had a significantly
positive benefit-cost difference of 432 927 e/a respectively 379 961 e/a. Benefit-cost differences are somewhat difficult
to interpret, because it is not clear what a good or bad benefit-cost difference would be for the project and how much
benefit is obtained per each e spent. However, a classical benefit-cost ratio can not be calculated, because there is
no real investment here. An approximation to something like a benefit-cost ratio is to divide the benefit from travel
time savings by the annual costs given above, even though operation costs are usually subsumed as (negative) benefit.
This gives a ratio of 5.5 for 150 4-seat SAVs and 1.8 for 200 4-seat SAVs and about 1 for the other two scenarios.
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Table 4: Benefit-cost differences for varying SAV costs.
Scenario benefit-cost difference [e/a] for a variation of SAV costs by

-30 % -20 % -10 % -5 % +/- 0 % +5 % +10 % +20 % +30 %
D2D 120 Cap8 786689 522120 257550 125265 -7020 -139305 -271590 -536160 -800729
D2D 150 Cap8 944136 646111 348085 199072 50059 -98954 -247967 -545993 -844018
D2D 150 Cap4 1103696 880106 656517 544722 432927 321132 209337 -14252 -237842
D2D 200 Cap4 1166277 904172 642067 511014 379961 248908 117855 -144250 -406356

The most doubtful aspect in the cost-benefit evaluation seem to be SAV costs. Table 4 shows the influence of varying
SAV costs on benefit-cost differences. For slight variations in SAV costs there is no major change, however at a 20 %
or more increase in SAV costs all scenarios seem disadvantageous. Such a high misestimation can not be excluded
given the uncertainties mentioned above.

6 Conclusion

All in all, the substitution of conventional bus lines with shared taxis shows some benefits for the passengers at a
reasonable cost for the operators. However, the advantages are smaller than expected. An enhanced shared taxi
routing algorithm might improve the case for shared taxis, but some issues would probably remain. Door-to-door
operation reduces walk distances, but increases detours to serve other passengers. Shared taxis tend to have unpre-
dictable departure and travel times if routes are altered to add another passenger while others are already on the taxi.
Furthermore, shared taxis could remain more expensive to operate, especially if the taxi routing algorithm would be
altered to provide lower wait times by bundling less rides.

Nevertheless, if private ridesharing operators enter the market as competitors of public transport, decreasing passenger
numbers will make conventional bus lines less profitable, creating a vicious circle of reducing costs by reducing services
and falling passenger volumes. So on the long run the case for shared taxis will improve and public transport authorities
might have no other choice than to partner with ridesharing companies or operate shared taxis themselves.
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