
THE END OF TRAVEL TIME MATRICES? OR: WHY WE SHOULD USE INDIVIDUAL1

TRAVEL TIMES2

Nico Kuehnel (corresponding author)3

Department of Civil, Geo and Environmental Engineering4

Technical University of Munich5

Arcisstr. 21, 80333 Munich6

Germany7

ORCID: 0000-0003-0527-86538

nico.kuehnel@tum.de9

10

Dominik Ziemke11

Transport Systems Planning and Transport Telematics12

Technische Universität Berlin13

Sekr. SG12, Salzufer 17-19, 10587 Berlin14

Germany15

ziemke@vsp.tu-berlin.de16

17

Rolf Moeckel18

Department of Civil, Geo and Environmental Engineering19

Technical University of Munich20

Arcisstr. 21, 80333 Munich21

Germany22

ORCID: 0000-0002-6874-039323

rolf.moeckel@tum.de24

25

Kai Nagel26

Transport Systems Planning and Transport Telematics27

Technische Universität Berlin28

Sekr. SG12, Salzufer 17-19, 10587 Berlin29

Germany30

nagel@vsp.tu-berlin.de31

32

Submission date: August 1, 201933

6,917 words (text) + 2 tables (500 words) = 7417 words34

nico.kuehnel@tum.de
ziemke@vsp.tu-berlin.de
rolf.moeckel@tum.de
nagel@vsp.tu-berlin.de


Abstract1

To reduce inaccuracies due to insufficient spatial resolution of models, it has been suggested to use2

smaller raster cells instead of larger zones. Increasing the number of zones, however, increases the3

matrix size of skim tables. Those become difficult to create, to store and to read, while most of4

the origin-destination pairs are calculated and stored but never used. At the same time, such ap-5

proaches do not solve inaccuracies due to lack of temporal resolution. This paper proposes to store6

and process travel times at the finest spatial resolution possible (at x/y coordinates) and a highly de-7

tailed temporal resolution. The approach is tested in the context of an integrated land use/transport8

model (ILUT) where travel times affect, among others, household relocation decisions. In this pa-9

per, person-level individual travel times are compared against traditional skim-based travel times.10

It was shown that skim-based travel times fail to capture the spatial and temporal variations of11

travel times on a microscopic scale. While skims provide acceptable averages in the case of car12

travel times if a dense network and small zones are used, transit travel times are heavily affected by13

temporal and spatial aggregation. When looking at travel-time-dependent relocation decisions in14

the land use model, transit captive households tend to react more sensitively to the level of service15

in transit when individual travel times are used. The results suggest that individual travel times can16

improve the spatial and temporal accuracy of models.17

18

Keywords: integrated land use/transport models, microsimulation, agent-based models, travel19

time matrices20



Nico Kuehnel, Dominik Ziemke, Rolf Moeckel and Kai Nagel 1

INTRODUCTION1

In 2000, Spiekermann & Wegener (1) published an article with the title "Freedom from the tyranny2

of zones." The idea was to use small raster cells instead of zones to reduce the error caused by the3

lack of spatial resolution. For matrix-based travel time skims, however, raster cells proved to be4

impractical. The matrix grows by a factor of n2, where n is the number of zones. In large zone5

systems, the matrix becomes difficult to create, to store and to read, while most of the origin-6

destination pairs are calculated and stored but never used. In addition, every travel time matrix is7

created for one point of time during the day, which may not represent well travel times for another8

time of the day.9

This paper proposes a new method to store and process travel times that allows the finest spatial10

resolution possible (at x/y coordinates) and a highly detailed temporal resolution (here applied in11

15-minute time bins, but it could be used in smaller time steps likewise). As an example to present12

the relevance of this high-fidelity representation of travel time, an integrated land use/transport13

model is used. Results suggest that travel demand models would equally benefit from this micro-14

scopic representation of individual travel times.15

In traditional integrated land use/transport models, the transport model provides zone-to-zone16

travel times in form of skim matrices. Those affect accessibilities, and thereby, household reloca-17

tion decisions. Usually, there is one travel time for each zone-to-zone-relation, which is aggregated18

in time (e.g. one travel time value for the peak hour) and space (e.g. one centroid per zone). In19

reality, however, a worker who commutes at 5:00 am experiences a different level of congestion20

and different mode options than a commuter traveling at 8:00 am. The impact of travel options21

on accessibility becomes even more complex for households with multiple workers. The temporal22

aggregation ignores that travel times may vary substantially during the day, which is of interest23

when trips are not made during peak hours. Especially for transit travel times, the time of day24

plays an important role due to service hours and frequencies.25

The spatial aggregation to zones may also affect results, particularly in larger zones. This is also26

known as the modifiable areal unit problem (MAUP) first described by Openshaw (2). While the27

problem of spatial biases is well known, “the effects of spatial biases on LUTI models remain28

largely unexplored and underestimated” (3). For transit travel times the distance to the next stop is29

important when accounting for access and egress times. In Addition, the next stop might be close,30

but the lines serving this stop will not connect every other zone equally well. A transit stop further31

away may serve better for a given trip.32

Existing aggregate approaches are unable to account for individual travel experiences. This project33

will overcome this gap by linking land use and transport time microscopically.34

In this paper, a new microscopic integrated land use/transport model is used to compare person-35

individual travel times against traditional skim-based travel times for the feedback from a transport36

to a land use model. The individual travel times use x/y coordinates and represent traffic condi-37

tions at specific times of day. The skim-based approach uses peak-hour travel times and centroid38

connectors. The goal of this paper is to identify the benefits of individual travel time queries in39

comparisons to more traditional skim-based travel times.40
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LITERATURE REVIEW1

Disaggregated microscopic models help capturing heterogeneities in travel behavior and household2

relocation (4, 5). High spatial resolutions support the representation of environmental issues(6).3

On the other hand, Wegener (4) pointed out that many disaggregate transport models were too slow4

to be executed multiple times in integrated land-use transport models. Another issue of microsim-5

ulations are stochastic variations between model runs that prevent reproducing results. Wegener6

(4) concludes that “ ’the more micro the better’ may be misleading.” The computing time of full-7

scale microsimulation models can easily exceed days or weeks. Adding too much complexity to8

simulation model is one of the sins Lee also describes in his “Requiem for Large-Scale Models”9

(7). One should pay attention to not increase complexity of models too much and keep models - as10

Einstein is said to have said - as simple as possible but no simpler.11

Nevertheless, there is a continued interest in increasing the spatial and temporal resolution in mod-12

els (8). Policies that test local impacts (such as transit-oriented development) or time-specific13

impacts (such as dynamic tolling) require more detailed representations of space and time. To14

strive for the right level of detail remains a challenge for many transport and land use modelers15

(9).16

In a previous study, the land use model SILO was coupled with the transport simulation MATSim17

(10). Here, an agent-based transport model successfully replaced an aggregated transport model18

for the Maryland region. MATSim proved to reproduce zone-to-zone skim matrices sufficiently19

well by averaging travel times from sampled coordinates in each zone. This first coupling, how-20

ever, did not yet include the feedback from the transport model to the land use model. However,21

it was proposed to implement a query architecture that allows agents in the land use model to22

query individual travel times from the transport model, such that agents who look for a new job or23

dwelling can query for travel times between micro-locations at specific times of day. The proposed24

query architecture has become operational in the meantime and provides the foundation for the25

research of this paper.26

In a review of existing integrated land use/transport studies, Badoe and Miller (11) identified sev-27

eral studies that “have worked with zonal-aggregate variables for gross spatial units [. . . ] thus28

clouding the effects [. . . ]”.29

The level of zonal aggregation largely affects simulation outcomes. The modifiable areal unit30

problem (MAUP) which was described by Openshaw (2) states that results of spatial analyses are31

influenced by the chosen zone size. Typically, there is a tradeoff to make between few large zones32

with coarse resolution and many intrazonal trips and many small zones with a finer granularity but33

much higher computing times. The MAUP affects the true representation of travel times (12). For34

transport models, zones should be “larger where there is less activity and smaller where there is35

more activity” (13). Previous studies confirmed that smaller zone sizes improve the fit of the model36

to observed data (14). Another study identified that the level of detail should be high for travel time37

queries to nearby zones and can be lower for more distant zones (15). Special attention should be38

paid to intrazonal travel times. Some of the microscopic simulation frameworks like MATSim do39

not use zones at all but only work with network graphs and x/y coordinates. The implementation of40

individual travel times in an integrated land use/transport model is expected to reduce the impact41

of the chosen zone system while increasing computation times.42
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THE FABILUT MODELING SUITE1

The FABILUT (flexible, agent-based integrated land use/transport) modeling suite consists of the2

land use model SILO (Simple, Integrated Land-use Orchestrator) (16) and the transport simulation3

model MATSim (Multi-Agent Transport Simulation) (17). For travel demand generation, MITO4

(Microscopic Transportation Orchestrator) (18) is used in this study. All three models are open5

source and written in Java, which allows for a tight integration. For studies with no travel demand6

model available, the FABILUT modeling suite can also be run with SILO and MATSim only,7

which e.g. allows to simulate the commute segment of traffic (10).8

On a year-by-year basis, SILO models demographic events (e.g. birth, marriage, death, etc.),9

household relocation and real-estate updates, such as construction of new dwellings, renovation,10

price updates, etc. SILO belongs to the class of land use models that incrementally update an11

existing synthetic population. For any year selected, MITO and MATSim are run to create travel12

demand and to simulate traffic on the network. By this process, simulation-based, link- and time-13

specific travel times are created.14

Currently, travel times are used for four reasons in SILO:15

• Accessibility calculation: peak hour skims are used to calculate potential accessibilities16

by car and transit.17

• Current housing satisfaction of residents: commuting times for all workers in a house-18

hold are used to assess how satisfied the household is with its current dwelling location.19

• Household relocation: a household will evaluate multiple vacant dwellings by taking20

into account commuting times of all workers of this household.21

• Job search: a person will evaluate vacant jobs based on the expected commute time to22

the respective region.23

Traditionally, a transport model would provide skim matrices with zone-to-zone travel times for a24

given time of day (sometimes distinguishing peak and off-peak travel times). Such skim matrices25

aggregate spatially by providing travel times from zone centroid to zone centroid and temporally26

by providing a limited number of times per day (commonly only one time, such as morning peak).27

In this research, we explore for the first time the use of individual travel times. We call these travel28

times individual because29

1. they reflect travel times from a micro location to a micro location in x/y coordinates.30

The size of zones becomes irrelevant, as all locations are stored in x/y coordinates in31

SILO32

2. they reflect travel times for a specific time of day. Someone traveling to work at 5:0033

AM in the morning will see different travel times than someone traveling to work at34

9:00 AM. Also, the availability of travel modes will differ by time of day.35

In the FABILUT modeling suite, MATSim is used to simulate traffic. In MATSim, each person is36

resolved individually as an agent and has one or more plans. A plan is a chain of activities (e.g.37

home–work–shop–home), including locations and activity end times. Activities at different loca-38

tions are connected by trips. MATSim is based on a co-evolutionary algorithm which iterates over39
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the three steps traffic simulation, scoring, and replanning (17). In traffic simulation (also mobility1

simulation or mobsim), travel demand is simulated on the physical network. The selected plans2

of all agents are executed simultaneously in second-by-second steps. The default physical simu-3

lation is a queue model, in which every link is modeled as a first-in-first-out (FIFO) queue. This4

computationally efficient design makes MATSim suitable to simulate large metropolitan regions.5

A common approach to reduce computing times, is using sampled scenarios where only a sample6

of the full population of agents is simulated in the transport supply system whose properties are7

scaled-down correspondingly (19).8

After traffic simulation, agents score (scoring) their plan, partially in reaction to their individual9

simulated travel experience based on the notion of utility maximization. In final step of every10

iteration, agents have the chance modify their daily plan (replanning) with regard to different11

choice dimensions (route choice, mode choice, departure time choice etc.). If a new plan is created,12

it is simulated in the traffic simulation of the next iteration. If not, agents select a plan from their13

existing plan choice set according to a probability distribution that converges to a multinomial logit14

model.15

In the current setup, MITO is used to model travel demand. MITO is a microscopic transport16

demand model that creates home-based tours and non-home-based trips of the population residing17

in the study area including mode and departure time choice. MATSim is used to simulate the18

tours/trips created by MITO, i.e. sub-segments of full day plans. As replanning strategy, only19

route choice is enabled, such that the application of MATSim in this study resembles that of a pure20

dynamic traffic assignment tool. Based on the MATSim transport simulation, travel times that are21

stored per link in 15-minute-specific time bins are created. This allows for spatially and temporally22

highly resolved travel time queries by the SILO land-use model.23

Under the same technical interface, SILO also queries travel times by public transport from MAT-24

Sim, which are provided based on the region’s public transport schedule. While possible in the25

MATSim transport simulation, public transport does not have to be explicitly simulated in the con-26

text of this study as transit travel times can be requested between micro locations in x/y coordinates27

for any given point of time during the day based on the transit schedule. The recent implementation28

of the raptor transit router (20), which has significantly reduced the computation times for transit29

routing, facilitates this task.30

In this research, we implemented both skim-based travel times and individual travel times. This31

allows us to test both approaches and explore the differences between querying skim-based versus32

individual travel times.33

Household Relocation34

The representation of travel times is particularly relevant for the household relocation module of
SILO. Household relocation can be triggered when households are unsatisfied with their current
dwelling, when couples marry/divorce or for children who leave their parental household. Inmi-
grating households use the same relocation decision rules as well. Relocation is modeled as a two
step discrete choice. First, a household evaluates all regions of the study area. Regions are sets
of zones, usually grouping them to a higher administrative level (e.g., county). The evaluation of
regions takes into account the number of vacant dwellings, racial or nationality shares, region-wide



Nico Kuehnel, Dominik Ziemke, Rolf Moeckel and Kai Nagel 5

average rent prices and the commute time between the region and employment zones of working
household members. For the region evaluation, an approximate travel time is sufficient given the
large areal size of regions. The selection of a region uses a multinomial logit choice model in
which the probability of choosing a region depends on the utility of a region in comparison of the
utilities of all other region alternatives:

p(r) =
eβ×ur∑
i e
β×ui

(1)

where ur is the utility of option r and ui are utilities of all choice alternatives. Once a region has1

been chosen, a sample of 20 randomly drawn vacant dwellings inside this region is chosen. The2

household evaluates all choice alternatives and selects a dwelling using equation 1, where r stands3

for a dwelling. The utility of a dwelling accounts for the size, quality and price of the dwelling and4

accessibility of the zone where the dwelling is located. For households with workers, the expected5

commute times from this new dwelling for each worker are included in the evaluation to ensure6

that a household attempts to find a location within an acceptable commute time for all workers in7

this household.8

The locations in x/y coordinates of the vacant dwellings and job locations are known. Also, the
model dataset provides a job start time for every worker in the household. It is hypothesized that
individual travel times could improve evaluation of dwellings over the use of skim-based travel
times. Both travel time to work by auto and by transit are considered in the evaluation of the travel
time to work. The utility component for commuting times for dwelling i is defined as

ucommute,i =
∏
j

e−λ∗tti,j (2)

where tti,j is the commute time to work place j from dwelling i. An exponentially decreasing
function represents the probability of commuting for the given amount of time. tti,j is defined as a
composite travel time consisting of car and transit travel times, depending on the ratio of cars and
workers in the household:

tti,j = τ × tti,j,car + (1− τ)× tti,j,transit (3)

where τ = cars
workers

is the ratio of cars to workers (capped at 0 and 1) and tti,j,car and tti,j,transit are9

car and transit travel times to workplace j from dwelling i. This definition will make households10

with cars less sensitive to transit travel time while households without cars are considered to be11

transit captives that rely on transit travel times.12

Query Architecture for Individual Travel Times13

The implemented query architecture allows agents to query for expected individual travel times14

from and to micro-locations in the form of x/y coordinates at a specific time of day. Agents do15

not draw on upon experienced travel times during the transport simulation as this would require to16

simulate every individual agent during the transport model simulation and ignore the advantages17

of MATSim’s scaling capabilities, which would unnecessarily increase runtime.18

Whenever SILO requires travel times, MATSim’s trip router is queried. The router accounts for19
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actual traffic conditions for auto travel times and for the actual schedule of transit. The router also1

includes access and egress times as well as transfer times for public transport queries. For car travel2

time queries, it is assumed that the car is parked very close to origin and destination, resulting into3

access and egress times that can be neglected.4

The query architecture does not compute travel times preemptively as it is done for skim matrices.5

Rather, it returns individual travel times as they are needed.6

STUDY AREA7

The zone system for the Munich study area, for which a skim matrix was generated, was developed8

with an automated zone system generator that creates smaller raster cells in densely populated areas9

and larger raster cells in rural areas, while respecting administrative boundaries (7). The synthetic10

population for this study area (21) includes household and job locations and was created using11

iterative proportional updating (22).12

SKIM MATRICES FOR COMPARISON13

The skims are calculated for auto and transit travel times by routing between weighted zone cen-14

troids of each zone at a defined and fixed peak hour (once for the morning and once for the af-15

ternoon peak). For 4, 924 zones, each skim matrix has 24, 245, 776 travel time values, of which16

many entries are never used. Zone centroids are obtained by geographically averaging the micro-17

coordinates of dwellings, weighted by their resident’s household size. For intrazonal travel times,18

we consider Z as the set of zones that include the n closest neighbors in terms of travel times. The19

intrazonal travel time tti,i of zone i is defined as a given share λ of the average travel time to these20

closest neighbors:21

tti,i = λ ∗
∑

j∈Z ti,j

n
(4)

where ti,j is the travel time from zone i to j and λ is a configurable parameter. By trial-and-error,22

reasonable estimates are obtained by setting n to 5 and λ to 0.66. In other words, the intrazonal23

travel time is set to two thirds of the average distance to the next five zones. For individual travel24

times, all queries ask for explicit origin and destination x/y coordinates, no intrazonal travel times25

need to be calculated.26

27

For transit travel times skims, all stops in a 1,000 meter radius around the weighted centroid of28

the origin are routed to all stops in the same radius around the centroid of the destination zone.29

In cases where no stops are found within the 1,000 meter radius, the (single) closest stop to the30

centroid at any distance is selected. The most optimistic route is then selected and access/egress31

times by walk are added between the stops of the selected route and the centroids of zones. In a32

last step, the resulting zone-to-zone travel time by transit are compared to the direct walk travel33

time. The shorter option is saved in the skim matrix.34

35
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RESULTS1

For this analysis, the travel times queried by agents throughout the first simulation year for both2

the skim and the individual case are compared. A sample of 200,000 queries during housing search3

of the first simulation year was recorded. The individually routed travel time is compared against4

the skim travel time. To allow for a fair comparison, both the skim and the individual travel time5

queries were obtained from the same relaxed MATSim simulation of each scenario. Figure 1 shows6

a visualization of dwelling evaluations in the study area. It can be seen that the density of queries7

correlates with the population and employment density which is highest in the five larger cities of8

the study area.9

10

Comparison of Travel Time Provision Methods11

First, four different setups are compared to determine the influence of the car network density and12

the skim peak hour on travel times. Two networks with different network densities were analyzed13

with two peak-hour alternatives. The dense network consists of 504,109 links, while the coarse14

network has 142,703 links. Based on traffic count data, the morning peak hour is set to be 8 AM15

and the afternoon peak hour to 5 PM. For the Munich use case, the afternoon peak hour is more16

congested than the morning peak hour. Table 1 shows the root mean squared errors (RMSE) and17

correlation coefficient (r) between the individually queried travel times and the respective skim18

query for the four setups. Both setups of the afternoon peak hour show higher RMSE values19

than their morning peak counterparts. This is expected as the queries from SILO use job start20

times as their query time, and the majority of workers starts their job in the morning hours. When21

comparing network density, the dense network setups exhibit more congruent results for both peak-22

hour alternatives. This can be understood as another variant of the MAUP problem. The accuracy23

of routing decreases with less realistic networks. At the same time, there will be fewer route24

alternatives for congested route segments. This increases the impact of congestion and leads to25

higher fluctuations. Additionally, the coarser network is less connected, which leads to high under-26

and overestimation of travel times depending on the actual queried coordinate or centroid.27

Figure 2 shows scatter plots for the four scenarios. The setup that uses the morning peak and the28

dense network shows the best match between skim and individual travel times. For both plots of29

the morning peak, there are point clouds to right of the diagonal that represent queries that were30

underestimated by the skim. Those queries are mostly from households in which the workers start31

work at untypical times (e.g. afternoon or evening). As congestion typically occurs inbound to the32

cities in the morning and outbound in the afternoon, the skim does not predict high congestion for33

people that commute into the city in the afternoon, thus underestimating their travel times.34

Figure 3 depicts the comparison of the transit case. Results are neither affected by car network den-35

sity (because transit is routed on a separate, congestion-free network based on a planned schedule)36

nor the peak hour used for the skim because service times are almost identical in the afternoon37

and morning peaks. It can be seen that the spread between individual and skim travel times is38

much larger than for auto travel times. The RMSE for the transit comparison is 66.45 minutes, the39

correlation coefficient is 0.84. The RMSE is rather high, because skim-based and individual travel40

times tend to be more different, especially in the range of longer travel times. This is plausible41
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FIGURE 1 : Visualization of dwelling searches simulated by SILO (sample of 25,000 searches shown). Red dots indicate job locations of workers
of the household looking for a new dwelling. Purple dots represent vacant dwellings that were evaluated by these households. The lines show which
dwellings were assessed in terms of commuting times.

as those queries are usually between more rural zones, which tend to be also larger zones. There,1

transit accessibility is low and the correct actual distance to the next stop is more decisive. In the2

skim case, the transit travel times are the same for the whole zone, which can be very inaccurate3

for large, rural zones. The correlation coefficient is relatively high as most of the queries are from4

households which live in one of the major cities in the study area, where zones are small. Overall,5

there seems to be no systematic bias to under- or overestimate transit travel times. Compared to6

car travel times, transit travel times are generally higher as expected. The error for transit travel7

times is higher than for auto travel times as the car network is much more connected than the8
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transit network, which makes it less crucial to query from/to specific points (i.e. stops) in the1

network.2

In the following sections, only the morning peak hour and the dense network will be considered to3

analyze auto travel times. This is the setting where skim-based and individual travel times are most4

similar. By choosing this setup, we give the skim-based approach the best possible performance in5

comparison to individual travel times. One should keep in mind, however, that skims will perform6

worse in many applications than presented below.7

FIGURE 2 : Comparison between individual and skim-based travel times for four different setups: morning peak - dense network (top left),
morning peak - coarse network (top right), afternoon peak - dense network (bottem left) and afternoon peak - coarse network (bottom right).
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FIGURE 3 : Query result comparison between individual and skim based travel times for transit modes.

TABLE 1 : Root mean square errors (in minutes) and correlation coefficients between individual and skim-based travel times for different setups.

Dense network Coarse network

Morning Peak
RMSE = 3.139
r = 0.929

RMSE = 8.339
r = 0.709

Afternoon Peak
RMSE = 7.094
r = 0.817

RMSE = 26.731
r = 0.487

Spatial Influence1

To analyze the effect of the spatial aggregation for the skim, the comparison is repeated with the2

time of day of the query fixed in the individual case as well, i.e. the same peak hour time as in3

the skim case is queried. For car travel times, the RMSE reduces to 1.89 minutes (compared to4

3.14 minutes without isolation of the spatial influence), which suggests that for the dense network5

the spatial aggregation is not too inaccurate when the routing is always done at the peak hour.6

Additionally, the outliers in which the skim travel times underestimated travel times are largely7

reduced, which supports the hypothesis that those are emerging from queries at untypical times. In8

the transit case, however, the RMSE hardly drops to 59.26 minutes. This suggests that the spatial9

aggregation is impacting the difference between individual and skim travel times much stronger10

than in the car case. Again, this can be explained by the importance of the actual microlocation in11

relation to stop locations.12

The MAUP problem can be seen when comparing the travel time differences against the zone13
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TABLE 2 : Root mean square errors (in minutes) for car and transit comparisons stratified by zone size a of the origin zone (km²).

a <= 1km² 1km² < a <= 2km² 2km² < a <= 3km² 3km² < a <= 4km² 4km² < a <= 5km² a > 5km²

Car 3.184 2.370 2.560 2.470 3.278 3.371
Transit 50.522 61.485 108.818 77.436 76.247 92.172

sizes of origin or destination. Table 2 shows the RMSE for the car and the transit comparison for1

different sizes of the origin zone (i.e. the dwelling zone) of the query. The RMSE stays rather2

constant around 3 minutes in the car travel time case. For transit, however, the initial RMSE of3

50.522 minutes of small origin zones increases with zone size. This is because larger zones are4

more inaccurate per se and additionally have a lower population density which should also correlate5

with the transit network density. Lower network densities increase the variation of travel times for6

exact coordinates inside the zone. Figure 4 shows the RMSE for all origin zones of the queries.7

One can see that the error is low for the larger cities like Munich. However, the error increases fast8

when outside city boundaries.9

Temporal Influence10

The impact of temporal aggregation of skim travel times is analyzed by comparing skim and in-11

dividual travel time by fixing the zone connectors in the case of individual travel times, but still12

using individual job starting times. The RMSE in the comparison of car travel times is 2.88 min-13

utes, which suggests that the impact of temporal aggregation is higher than the impact of spatial14

aggregation. In contrast to the comparison with fixed query times, fixing the spatial component15

(i.e. zone connectors) reveals the outliers in which the skim underestimates travel times. This con-16

firms that these outliers are an artifact of temporal aggregation which is inaccurate for untypical17

job start times. This is confirmed by looking at the RMSE throughout the day (see figure 5). The18

RMSE for queries from 6 am to 10 am is 2.44 minutes. In the afternoon from 3 pm to 7 pm the19

RMSE increases to 6.55 minutes, with most of the queries underestimated by the skim. In Munich,20

the congestion in the afternoon peak hour is typically higher than in the morning peak hour. This is21

not captured when the skim is computed for the morning peak hour. Additionally, there are people22

with anticyclical behavior that start their job in the afternoon and who have to travel in the opposite23

direction of the main congestion, e.g. people who live inside the city and go to work outside. In24

this case the skim does not predict high traffic for going out of the city since it was created for the25

morning peak. This leads to underestimated travel times.26

Contrary to car travel times, the transit travel times seem to be less distorted by temporal aggre-27

gation than by spatial aggregation. The RMSE drops to 25.01 minutes when querying from fixed28

zone connectors which is less than half of the error of the spatial impacts comparison. This can29

be explained by the fact that transit travel times are routed based on scheduled times on a separate30

network without congestion. As service is similar in terms of frequencies for most of the day, the31

time of day does not have a strong effect on transit travel time queries. The RMSE is 59.52 minutes32

from 6 am to 10 am and hardly changes to 57.40 minutes in the afternoon from 3 pm to 7 pm. The33

seemingly larger variations in the morning hours in figure 5 can be explained by the fact that the34

amount of queries is much higher than in the afternoon hours, leading to a higher spread.35

However, the RMSE is still high and large differences can be seen during night and off-service36
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FIGURE 4 : Root mean square error values for the transit comparison by zone centroids of the origin zones of queries.

hours. Figure 5 shows an almost diagonal line in the early night hours until 4 am during which1

the skim underestimates travel times. As most of the transit services do not operate in those hours,2

the transit router will return a large direct walking trip, making transit very unattractive. The3

underestimation of travel times reduces towards the start of the transit operation around 4am as4

people might as well wait for the start of the service. It can be expected that the error increases5

when the schedule varies more throughout the day.6
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FIGURE 5 : Difference between individual and skim travel times by time of day for car (left) and transit (right). Note different scales.

Impacts on Household Relocation1

It is expected that the aggregations in skims lead to inconsistent behavior in microscopic reloca-2

tion decisions. Transit captive households without cars that only evaluate transit travel times will3

select more randomly when choosing from dwellings within the same zone in the skim case as4

the zone-to-zone transit travel times will be the same. In the query analysis it was shown that the5

spatial impact is high for transit skims. Compared to individual travel times, households should on6

average move closer to transit stops because the exact microlocation in relation to stop positions7

is important. To test this, all household moves of the first simulation year of the Munich scenario8

were recorded for the skim and the individual travel time representation. In both scenarios the9

households that decided to look for a new dwelling were randomly chosen with a probability of10

1%. This is to prevent that the current housing satisfaction, which is also based on current travel11

times, would lead to completely different households that decide to move. After the simulation,12

the distances of the new dwelling locations to the nearest stop according to the transit schedule13

were calculated. When looking at all relocations (28,430 cases), the average distance to the closest14

transit stop after moving is 1085,45 meters in the skim scenario and 1085,19 meters in the individ-15

ual travel time scenario. The average distances are the same when looking at all relocations which16

includes the majority of households which are not "‘transit captives"’. However, when looking at17

the relocations of households that have no cars and at least one worker who has to commute (2,88618

cases), the average distance to the closest stop drops to 605,57 meters for the skim scenario and to19

569,51 meters in the individual travel times scenario. One can see that those households correctly20

show a higher sensitivity to transit accessibility in both scenarios. In the individual travel time21



Nico Kuehnel, Dominik Ziemke, Rolf Moeckel and Kai Nagel 14

scenario households seem to be slightly more sensitive (about 6%) to transit stop distance than in1

the skim scenario, which is a small effect but confirms the hypothesis of a more random selection2

of dwellings in the skim case. It is important to note that the nearest stop distance is not necessarily3

the stop which is served by the actually taken transit line for getting to work.4

DISCUSSION5

The presented results suggest that the temporal and spatial aggregation of travel times can have6

a large impact on their accuracy. While this is less true for car travel times if a dense network7

is used, it becomes even more important in the case of transit travel times which proved to be8

very unreliable. A disadvantage of the individual query is the extended computation time. Still, a9

model run of the FABILUT modeling suite with individual travel times run multiple decades into10

the future can be finished in less than two days for the Munich use case. On the other hand, skim-11

based approaches that aim to improve accuracies (e.g. using multiple distinct time-of-day-specific12

matrices to reduce effects of temporal inaccurracies or a very high spatial resolution to reduce13

effects of spatial inaccuracies) also increase computing times and beyond that lead to memory14

requirements that can become unwieldy. The relocation impacts of the use case were small but15

nevertheless clearly confirm the increased accuracy of individual travel times. A reason for the16

relatively small impact could be that households do not react very sensitive to changes in transit17

travel times yet as they draw upon the same commuting probability as used for the evaluation of18

car travel times which tend to be shorter. Another limitation of the current approach is that workers19

only evaluate their trip going to work and do not care about the return trip.20

OUTLOOK21

This research showed the relevance for individual travel times for the integration of land use and22

transport models. With this example, we were able to show that it makes a substantial difference23

when we introduce the spatial and temporal detail of individual travel times compared to aggre-24

gate skim matrices. This finding suggests that it will also make a substantial difference when we25

replace skim matrices with individual travel times in travel demand modeling. Most destination26

choice and mode choice models in operation use skim matrices to calculate the utilities of dif-27

ferent destinations and various modes. Sometimes, peak hour skims and off-peak hour skims are28

distinguished. One could imagine, however, that replacing skims with individual travel times may29

have an equally substantial impact as shown in this paper for land use/transport model integration.30

For example, the transit schedule differs by time of day, which is likely to affect the tripmaker’s31

mode choice depending on their departure time. Similarly, congestion changes over the course of32

a day, which may entice them to choose different destinations for trips in the morning than in the33

afternoon. Last but not least, many travel demand models suffer from a coarse zone system. In34

a skim-based world, every trip to a larger zone takes the same travel time, no matter whether the35

final destination is close to the zone centroid or at the outskirts of the zone. Individual travel times36

allow to overcome this spatial and temporal aggregation.37

The implemented query approach can be extended to additionally include person attributes (e.g.38

age, gender, disability status, value of travel time) or vehicle attributes (e.g. fuel type, noise and39

pollutant emission rates). Furthermore, policy-relevant network attributes can be implemented40
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(e.g. environmental zones, time-dependent tolls etc).1

Another important benefit is that intrazonal travel times and the problems of defining their calcu-2

lation (23, 24) are not needed anymore.3

The presented integrated land use transport model approach and the implemented query will also4

allow to query the transport model directly for additional data like noise or air pollutant emissions.5

Even in situations where the individual query is not desired because of higher computing times, the6

presented coupling can also be applied for MATSim to create the skims after each transport model7

run. This reduces the amount of input data as the skim does not have to be provided at the start8

of the program, whereas a MATSim simulation scenario of a study region can be comparatively9

easily be set-up in case a synthetic population of the SILO model already exists for that region10

(10).11
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