
A Web-Based Data Visualization
Platform for MATSim

Journal Title
XX(X):1–6
c©The Author(s) 2020

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

SAGE

Billy Charlton1 and Janek Laudan1

Abstract
There are many tools available for analyzing MATSim transport simulation results, both open-source and commercial.
This research builds a new open-source visualization platform for MATSim outputs that is entirely web-based. After
initial experiments with many different web technologies, a client/server platform design emerges which leverages the
advanced user interface capabilities of modern browsers on the front-end, and relies on back-end server processing
for more processor-intensive tasks. The initial platform is now operational and includes several aggregate-level
visualizations including origin/destination flows, transit supply, and emissions levels; as well as a fully disaggregate
traffic animation visualization. These visualizations are general enough to be useful for various projects. Further work
is needed to make them more compelling and the platform more useful for practitioners.

Keywords
MATSim, data visualization, agent-based simulation

Introduction
MATSim1 is an open-source framework for implementing
large-scale agent-based transport simulations. MATSim is
widely used for transportation research in academic settings,
and is gaining momentum as a tool ready for practice in real-
world planning contexts.

There are many tools available for analyzing MATSim
results, both open-source and commercial. Typically,
analysts can choose either the free tool OTFVis2 or the
commercial software Via3, both of which are desktop
software packages requiring installation as well as a fair
amount of technical acumen to operate. Alternatives to these
tools include the more general-purpose desktop mapping
software packages such as QGis and ArcGIS, or statistical
software packages, again all of which require installation and
expertise to use.

As MATSim moves from the confines of academic
research to a more public-facing role, a notable gap is
apparent: there are no web-based interactive tools available
for disseminating MATSim data and results. This creates
a challenge for using MATSim in public policy settings:
the only people who can meaningfully examine and explore
results are those who have extensive technical knowledge
and access to the specialized software and large datasets
involved.

This research explores one way to fill this gap: building
an open web-based data visualization platform which is
specifically designed to complement MATSim.

Motivation
The rapid advancement of Internet browsing technologies
in the last five years has enabled the web browser to
do things much more ”application”-like than ever before:
background processing, three-dimensional rendering using
graphics card (GPU) acceleration, offline support, and

more. The combination of these technologies and their
standard implementations on every popular hardware type
and operating system now makes the web a very compelling
platform.

For MATSim research, the question is: could a web
browser really be useful for exploring and delivering results
when the datasets are so large? Answering this question is
the primary motivation for this research. Essentially, has the
web become powerful enough for MATSim?

Currently, analysis of MATSim outputs ends up in
research reports, Adobe (PDF) documents, video screen-
recordings, and presentations. An online dashboard of results
that a user could explore and manipulate would not only
be more interactive, but might also reveal findings that the
original analysts hadn’t anticipated.

Requirements

The research team at Technische Universität Berlin had
several ”blank slate” discussions before any code was
written: meaning, if we could start at the very beginning
and design something completely web-based and open, what
would the bare minimum requirements be for it to be truly
useful? The following requirements emerged from those
discussions.

1Technische Universität Berlin

Corresponding author:
Billy Charlton, Technische Universität Berlin, Transport Systems
Planning and Transport Telematics, Secretariat SG 12, Salzufer 17-19,
10587 Berlin, Germany
Email: charlton@tu-berlin.de

Prepared using sagej.cls [Version: 2017/01/17 v1.20]



2 Journal Title XX(X)

Requirement 1: Web browser-based

Given the above-stated motivation and hypothesis that the
modern web platform is ready for large-scale visualization
tasks, the most obvious requirement is that the product of
this research must work with any modern web browser.

Several specific web technologies developed and made
widely available in recent years enable us to perform this
research: HTML 5, CSS 3, WebGL, ECMA Script 6, and
Web Workers. Briefly, these technologies are:

(i) HTML 5 improves and standardizes the ”document
model” of what constitutes a web page and how it is
specified.

(i) CSS 3 is a styling language that enables fine-grained
layout and styling of individual elements on a page.
CSS 3 defines in a consistent, standard way the
details of elements including color, size, layout, and
animation of page elements.

(ii) WebGL provides in-browser support for the 3D-
accelerated graphics capabilities of modern machines.

(iv) ECMAScript 6 is an updated (2015) version of the
venerable Javascript scripting language that has been
part of the web platform since the early 1990’s.
Recent versions of Javascript eliminate the more
problematic aspects of the language and make it easier
for developers to create bug-free, efficient code.

(v) Web Workers are a recent (2013) addition to the web
platform that allow background processing for long-
running tasks. Before Web Workers, there was no way
to run truly multi-threaded code inside a browser.

A complication in web development is that the major
web browser vendors implement these technologies on their
own timelines, some much more rapidly than others. Further
complicating things is the reality that end users do not always
upgrade their browsers frequently (or at all). This creates a
landscape where there is a technology adoption curve with
a very long ”tail”. Thus, developers of every web site need
to make a conscious decision about where to draw the line
– choosing necessary technologies for their site to operate
correctly, while knowing that some users with older browsers
will either have a sub-optimal experience or no access to the
site at all.

For this research, we are deliberately exploring the latest
standard web technologies, with the expectation that access
to these technologies will become more and more common in
the future. Thus, we are targeting the most recent versions of
modern web browsers as of 2019, including Google Chrome,
Mozilla Firefox, and Apple Safari. All three browsers fully
support the above-listed technologies, and importantly, all
three auto-update automatically, ensuring that most users of
those browsers stay current as these technologies evolve.
This does leave out older browsers such as Internet Explorer
and Edge, as well as browsers with small market share. Sup-
porting those browsers would require much more deliberate
and time-consuming testing, which while not impossible, is
currently out of scope. For some government users this is
acknowledged as possibly problematic, since use of Internet
Explorer 11 is still mandated at some agencies.

Requirement 2: Open source
The entire project, including all front-end (browser) and
back-end (server) code, must be fully open-source.

No proprietary or closed licensing schemes were consid-
ered, primarily because excellent proprietary visualization
packages for MATSim already exist. Creating a competing
product would be duplicative and unnecessary, and would not
further the research goal of determining whether web-based
technology is now advanced enough to work with MATSim
outputs. The goal of this research is not to replace existing
proprietary solutions, but rather to complement them.

The software developed as part of this research is licensed
entirely with the GNU General Public License version 3,
commonly known as the GPL v34.

This matches the license of MATSim itself. Several other
open-source licenses were considered, including the MIT
License and the Apache Public License, but the benefit of
sharing a common license with MATSim outweighs any
perceived benefits of switching to other open licenses The
main benefit of those other open licenses is compatibility
with commercial software. Given its narrow scope, this
research is not likely to be of interest to existing commercial
vendors. Furthermore, the research team does not intend to
turn this into a commercial product. Thus the GPL license is
a good fit.

Requirement 3: Use good defaults, with minimal
configuration, and be opinionated
Since its inception, the web platform has had a relentless
focus on simplicity and smooth user onboarding. Users
are accustomed to being immediately familiar with a site
– often within seconds of their first interaction. Because
of this expectation, it is critical that this research follow
current best practices for user interface (UI) and user
experience (UX). Specifically, that means using familiar
UI paradigms such as navigation bars and breadcrumbs,
separating configuration from usage, limiting settings and
options to the bare minimum, and being ”opinionated”, i.e.
encouraging a correct way to accomplish a task.

This approach is dissimilar to some data exploration
tools (e.g., QGis and Via) where extreme configurability
is emphasized. Rather than providing myriad options for
details such as scales and color ramps, our research focuses
on choosing good defaults and determining whether that is
sufficient for the software to be useful.

Requirement 4: An extensible platform
Every data visualization use case is different; there is no way
to anticipate how the tool will be used. If the platform is
too generic, it will be not at all useful. Conversely, if only
hard-coded visualizations are created for specific projects, it
will be relegated to ”demo-ware”, meaning it is a successful
technology demonstration but not actually useful for real
users.

To fulfill this requirement the software platform will need
to be extensible: basic capabilities and templates will be
provided, but a user with some level of coding skill should
be able to create new visualizations that are not anticipated
by the researchers.

Prepared using sagej.cls



Charlton and Laudan 3

Initial experiments
It is no exaggeration to state that the Javascript code library
ecosystem is extremely, enormously large. Thousands of
libraries and packages are available on a common centralized
Javascript repository known as ”NPM”, and there are often
multiple packages that do similar things. As a developer,
one must assess and select from these packages or choose
to solve a problem by writing code by hand. Of course these
libraries are of varying levels of popularity and quality.

Based on the requirements laid out above, some initial
experiments were carried out to assess various approaches
before committing to a technology stack.

Visualizing time-dependent data on a
geographic map
Two popular web-based Javascript libraries were tested for
displaying geographic data; Leaflet and Mapbox GL. A
simple test case comprised of MATSim simulation outputs
was developed, with the goal of displaying aggregated
roadway link volumes by time of day.

Leaflet (leafletjs.com) is very popular and its
application programming interface (API) is a bit simpler
than that of Mapbox GL. Leaflet uses background map
”tiles” at specific zoom levels, and layers data on top of
those base maps. With small networks (we tested Cottbus,
Germany, a small city of 100,000 inhabitants) Leaflet
performed well, but medium-sized and large-sized networks
with many elements visible at once suffered from noticeable
performance degradation. This was problematic, as this was
the simplest use-case envisioned.

Mapbox GL (mapbox.com) fared much better, appar-
ently better-suited to displaying large datasets with many
visible features simultaneously. In addition, Mapbox GL’s
use of 3D vector graphic mapping instead of preset tiles
made for a much more pleasing user experience, with smooth
animations between zoom levels and better background pro-
cessing during page loads. For these reasons, Mapbox GL
was chosen as the base map for the remaining geographic
visualizations.

Visualizing non-geographic data
There are hundreds of data visualization libraries available
for the web which provide ways to produce charts and plots
of varying complexity. Our requirement of using open-source
code narrows the field considerably.

After experimenting with several packages including
D3, Raphael, Morris and others, the package Vega-Lite5

exhibited many of the characteristics desired. Notably, Vega-
Lite follows a declarative syntax known as the ”grammar
of graphics”, as popularized by Wilkinson6. This grammar
allows concise description of the meaningful components of
a graphic. An added benefit is that graphs and charts can be
downloaded in image format or in Vega source format, which
is helpful for other researchers wanting to learn how to use
the data format.

Dealing with large datasets
MATSim network files are small enough to fit in com-
puter memory (RAM), but MATSim plan files and event

files can be much larger than RAM, necessitating careful
consideration about how to handle them.

Modern browsers allow access via API to a data storage
area that is unique per hostname, i.e. http://mysite.com
is allowed some storage on the local machine. Initial
experiments revealed that each browser vendor implements
this storage differently, with very strict limits on the absolute
amount storage available, sometimes based on how much
free space remains on the user’s machine. It became apparent
that this local browser-based storage would not be sufficient
for MATSim outputs. Running a local file-server process
would allow browser access to a specific folder on the
machine, which might be nice for advanced analysts but
violates the research goal of being fully web-based on the
client end. Thus, a client-server paradigm emerges as the
only truly viable alternative, and indeed this is how most
websites operate today: the browser is the front-end to the
heavier processing and storage tasks that happen on someone
else’s server. Note that ”someone else’s server” is usually
referred to as ”the cloud”.

Platform architecture
A client/server architecture was chosen for this research
based on the initial experiments described above.

The research team authored back-end server software for
file storage, user authentication, and data pre-processing.
Due to space considerations, this paper does not delve into
the details of those components. Suffice it to mention that
the front-end communicates with them to establish what
resources a user has access to, and provides an application
programming interface, or API, with which to query and
fetch available files and resources. The code for those servers
is also open source, and may be the subject of future papers.

The front-end architecture has several interacting compo-
nents, described below.

”Vue” Single Page Application
The primary framework used to build the application is
known as ”VueJS” or Vue (available at vuejs.org). Vue
is a framework for building interactive user interfaces on the
web; it provides the glue between the items a user clicks
and the code that runs when they do so. Vue provides many
services which allow a web page to behave more like a full-
featured application, including state management, routing
between different URLs, and componentization of code in
a way that encourages code reuse and loose coupling. Vue
depends on Javascript, which means it does not work for
users who have disabled scripting in their browser.

Vue is most often used to write so-called ”single page
applications” which are websites that behave like desktop
applications. Most large, popular websites such as Github,
Twitter, and Facebook all employ this paradigm, meaning
the site handles page transitions and URLs as if they are all
in one common namespace, and the user thinks less about
visiting URLs and more about navigation through visual
components to accomplish tasks. This matches our use case.

Vue components each encapsulate the three elements
required for the modern web: HTML layout, Javascript
code, and CSS formatting. Components only interact with

Prepared using sagej.cls

leafletjs.com
mapbox.com
vuejs.org


4 Journal Title XX(X)

each other through well-defined pathways of properties and
events, which greatly improves debuggability.

Build system
The build system of a modern web application is fairly
complex and the Javascript ecosystem changes rapidly. After
numerous iterations, the current build system comprises a
series of individual tools that all work together to produce
the final assets that get sent to a user’s browser. Those tools
include the Vue command line interface (CLI), the NPM
package manager, webpack, babel, and TypeScript.

Notably, the initial codebase was migrated to the
Typescript language midway through development, as the
benefits of a strongly-typed language were perceived to
be worth the development time. TypeScript is a separate
language from JavaScript, and enforces type annotations for
variables and adds additional features such as enumerations.
The TypeScript compiler then converts TypeScript code into
ECMAScript 6 JavaScript, which can be run in the browser
(as JavaScript is the only scripting language that browsers
support).

Visualization plug-ins
One of the main requirements of this research is to produce
a system where new visualizations can be produced rapidly
and added into the existing framework to generate new
capabilities.

The Vue component architecture enables this. To create
a new visualization, a developer copies an existing ”blank”
visualization template and gives it a new name, specifies the
file inputs and parameters required, and then uses the above-
described libraries to modify the code per their needs.

This currently requires ample coding skill in Javascript;
it is not a system that is point-and-click like an online
data exploration tool. Experience with other similarly-
designed platforms suggests that software-minded analysts
or modelers would be able to extend the platform, but typical
end users will not.

Results: the current state of the tool
A working instance of the platform is now online and
available at viz.vsp.tu-berlin.de. Sample datasets
are uploaded, and pre-built visualizations are publicly
accessible, as a demonstration of the platform’s current
state. There is also a user login system so that internal
researchers can extend and experiment with the system,
without exposing data or work-in-progress to the public.

Basic user, project, and file management capabilities are
operational. This includes grouping files by model run or by
other user-defined tags, as can be seen in Figure 1.

See the following screenshots in Figures 2- 7 for examples
of the current state of the user interface. Note of course that
the tool demos better live than in screenshots, as the whole
point of this research is to develop an interactive tool.

Several types of aggregate visualizations are developed:

(i) Origin/destination flows between aggregate areas, so-
called ”spider diagrams” (Figure 2)

(i) Link flows, by time of day and mode (Figure 3)

Figure 1. Project dashboard

Figure 2. Origin/Destination flows

Figure 3. Link volume summary

(iii) Transit supply explorer, which displays all transit
routes and allows the user to see which routes serve
specific stops and links. (Figure 4)

(iv) Sankey diagrams, which can be used to depict
changes/flows between between scenarios across
multiple choices, such as shifts in mode between two
scenarios (Figure 5)

(v) Emissions levels on a geographic hexagonal grid basis
(Figure 6)

In addition, one disaggregate animation is available:

Prepared using sagej.cls

viz.vsp.tu-berlin.de


Charlton and Laudan 5

Figure 4. Transit depiction

Figure 5. Mode shift diagram

Figure 6. Emissions plot

(i) A vehicle flow simulation, showing individual vehicle
agents in real-time on the network. (Figure 7)

Workflow feedback
User interface design (UI) and user experience (UX) have
their own entire fields of research. Initial prototypes of
the tool simply did not meet the needs of test users.
Problems included: difficult discerning which files were
which; inability to efficiently use the model run tagging
feature (in which a user could mark sets of files as belonging

Figure 7. Vehicle animation

to a particular MATSim run); separate user logins causing
data to be inaccesible to team members working on the
same projects (resulting in everyone using a common ”team”
login, against best practices); private projects ”leaking” onto
the public website; and myriad usability bugs in the data
visualizations themselves.

These usability problems were eventually solved by
surveying other technical websites which organize and
present large amounts of data. One website in particular,
Github.com, was found to be well-liked by test users and
has a similar hierarchical view of data: users can belong to
organizations, and both organizations and users can create
projects (”repositories” on Github) which may hold large
numbers of files.

By adopting a project and user paradigm similar to that
employed by Github, users were immediately more familiar
with the site and had less to learn. The current site adheres
to this so closely that test users often refer to the platform as
”MatHub”.

Performance
Even with modern hardware and the latest browsers, it is
quite challenging to produce performant, visually pleasing
results with disaggregate MATSim data. The vehicle flow
simulation depends heavily on the back-end server to
produce and deliver simulation ”frames” to the browser in
real-time, so that the browser simply has to render the data.

Various levels of aggregation make MATsim data much
easier to visualize, as is reflected in the number of different
visualizations this research was able to produce with
aggregate data in a short time frame.

Preprocessing. The traffic animation and the emissions
”hex grid” visualizations both rely on back-end server
processes to preprocess the raw MATSim event outputs.
This takes anywhere from a few seconds to many minutes,
depending on the size of the simulation that was run. The
preprocessing only needs to occur once, and thereafter
the results are cached and stored on the server. The UI
presents a helpful ”still processing” message during this
stage. Unfortunately, changing some settings such as the size
of the hex-grids for the emission tool means the calculations
must be redone. Further work is being done to make these
processes run as quickly as possible.

Prepared using sagej.cls

Github.com


6 Journal Title XX(X)

Map layer limitations. The Mapbox GL mapping library
allows lines, points, and polygons to be displayed on top of
a base map. There seems to be a number of map elements
beyond which performance becomes very slow; various
techniques can be used such as aggregating elements at
further-out zoom levels to get around this. Another option
is to use Mapbox GL only for the base map, and to use
the WebGL graphics libraries to draw large numbers of
elements directly on top of the map. This is the technique
used for the traffic animation, which can easily support tens
of thousands of elements (all in motion!) simultaneously.
For additional visualizations which have large numbers of
grahical elements, more research will need to be done on
layering WebGL elements on top of the base map.

Mobile device support
Initially, the research targeted desktop browsers only. The
reasoning was that analysts currently use desktop software,
and it would be sufficient to complement those desktop tools
with a new web-based option.

However, as the tool started becoming usable by internal
users, it quickly became apparent that everyone wanted some
version of the visualizations to work on mobile devices, too.
It was suggested that even a read-only visualization ”viewer”
for mobile would be better than not having the tool work at
all on mobile.

To address this, the layout of the main user interface
needed to be redesigned, but the overall stack of web-based
libraries and components chosen was already well-suited to
mobile use. This effort is currently underway.

Conclusions and outlook
Experimenting with the various technologies and getting all
of the disparate pieces working together was an enormous
task, one which took much longer than anticipated. However,
those decisions are now behind us and the platform has
become quite stable.

A new visualization can now be generated by the
researchers in a matter of days or weeks. The researchers
are admittedly very familiar with the inner workings of the
system, but even so it has been encouraging to see new
visualizations go from ideation to rough draft in such a short
time.

None of the above-listed visualizations are particularly
groundbreaking or visually stunning. And, all of them could
be easily created in other tools (although usually without the
interactivity that the web enables). This is a bit disappointing
but the open nature of the platform, requiring no software
installation by end users, still has an advantage: it opens
up the display of MATSim results to the public and to
decisionmakers, even if they do not have access to desktop
mapping or travel forecasting software.

Another use case that has emerged from these visualiza-
tion experiments is a more regimented data management
tool for MATSim. Currently there is no straightforward way
to share MATSim datasets online. The combination of the
new file storage and management capabilities along with the
Github-like user interface provides a natural place for users
to store and disseminate results.

Importantly, the world has not stood still while this
platform was under development. Just in the past year, major
data visualization efforts from well-funded companies such
as Uber and others have been released. There are legitimate
questions about how much of this work could be superceded
by large, well-funded, professional coding teams.

Despite these concerns, the MATSim visualization
framework is operational and is now just beginning to be
useful for researchers at the department of its creation. This
bodes well for further development in the near future.

All code is available on the MATSim Github site, at
github.com/matsim-org/viz.

Author Contribution Statement
The authors confirm contribution to the paper as follows:
study conception and design: Billy Charlton, Janek Laudan;
data collection: Billy Charlton; analysis and interpretation
of results: Billy Charlton, Janek Laudan; draft manuscript
preparation: Billy Charlton. All authors reviewed the results
and approved the final version of the manuscript.

Acknowledgements

This research project is part of the National Research Programme
”Big Data” (NRP 75) of the Swiss National Science Foundation.
Website: http://www.nrp75.ch/

References

1. Horni, A., Nagel, K., & Axhausen, K. W. (Eds.). (2016). The
multi-agent transport simulation MATSim (p. 618). London:
Ubiquity Press.

2. Strippgen, David (2016) OTFVis: MATSims Open-Source
Visualizer. In Andreas Horni, Kai Nagel, Kay W. Axhausen
(Eds.): The Multi-Agent Transport Simulation MATSim:
Ubiquity Press, pp. 225-234.

3. Rieser, Marcel (2016) Senozon Via. In Andreas Horni, Kai
Nagel, Kay W. Axhausen (Eds.): The Multi-Agent Transport
Simulation MATSim: Ubiquity Press, pp. 219-224.

4. Free Software Soundation (2007) GNU General Public License,
Version 3. URL: www.gnu.org/licenses/gpl.html

5. Satyanarayan, A., Moritz, D., Wongsuphasawat, K., and Heer,
J. (2016) Vega-Lite: A Grammar of Interactive Graphics. IEEE
Transactions on Visualization and Computer Graphics, Volume
23, Issue 1. DOI: doi.org/10.1109/TVCG.2016.2599030

6. Wilkinson, Leland (2005) The Grammar of Graphics, Second
Edition. Springer Press, Chicago, USA. DOI: doi.org/10.1007/0-
387-28695-0

Prepared using sagej.cls

github.com/matsim-org/viz
http://www.nrp75.ch/

	Introduction
	Motivation
	Requirements
	Requirement 1: Web browser-based
	Requirement 2: Open source
	Requirement 3: Use good defaults, with minimal configuration, and be opinionated
	Requirement 4: An extensible platform

	Initial experiments
	Visualizing time-dependent data on a geographic map
	Visualizing non-geographic data
	Dealing with large datasets

	Platform architecture
	"Vue" Single Page Application
	Build system
	Visualization plug-ins

	Results: the current state of the tool
	Workflow feedback
	Performance
	Mobile device support

	Conclusions and outlook
	Author Contribution Statement


