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Abstract

In this research project, we implement a vehicle type dependent range constraint into a Vehicle Routing Problem (VRP) to consider
the limited range of electric vehicles in urban freight transport planning due to the its restricted battery capacity and energy con-
sumption. We apply this VRP in the route optimization jsprit which is linked to the microscopic agent-based simulation MATSim.
In the framework of a case study focusing on food retail distribution in Berlin, Germany, we operationalize the range constraint
and demonstrate the functionality and the effectiveness of this constraint using the distance from routing in a transport simulation
network. Based on the simulation results, we analyze and discuss the impacts of the limitations of Battery Electric Vehicles (BEVs)
on freight transport demand, road mileage performed and the resulting transport costs and greenhouse gas (GHG) emissions.
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1. Motivation and research objectives

Reducing greenhouse gas (GHG) emissions is one major objective to limit the global warming to below 2◦C above
pre-industrial level and go towards a (more) sustainable future (United Nations, 2015). At the European level, the
European Commission agreed on the "European Green Deal" in 2019 which includes decoupling of the economic
growth from resource usage and having zero net GHG-emissions by 2050 (Europäische Kommission, 2019). Besides
this, at national level, different countries defined their own plans for climate protection, e.g. the German "Climate
Action Plan 2050" (BMUB, 2016). 35% of CO2 emissions in the transportation sector are currently emitted by road
freight transport (BMUB, 2018). This German action plan foresees to reduce the GHG-emissions of the transport
sector by 40% until 2030, compared to 1990. The European Commission aims to reduce the transport emissions by
90% until 2050. To achieve this goal, electrifying the transportation sector could be a suitable solution. Hence, the
current internal combustion engine vehicles (ICEVs) have to be replaced by battery electric vehicles (BEVs).
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The range of BEVs is currently restricted and recharging is still much more time consuming in comparison to
refueling of ICEVs. As a consequence, route planning is so far too optimistic and (some of) the routes planned are too
long and cannot be carried out by BEVs (Liimatainen et al., 2019; Martins-Turner et al., 2020).

This issue could be avoided if route planning considers the limitations concerning the battery capacity and energy
consumption of BEVs. As a consequence, the adjusted distance of the routes planned could be performed by BEVs.

For this reason, our research objective is to integrate the limited range of BEVs in existing Vehicle Routing Problem
(VRP) solution algorithm to generate more realistic routes carried by BEVs. In this publication, we will investigate
the impacts of the limitations of BEVs on freight transport demand, road mileage performed and the resulting trans-
port costs and GHG-emissions. Due to the limitations of these vehicles we expect that more BEVs are necessary in
comparison to ICEVs to fulfill the orders of the clients. In the following, we will present the methodology developed
to consider the limited range of BEVs. First, we will describe the implementation of the range constraint in the route
planning algorithm. For generating the routes, the route optimization jsprit is used to solve the VRP which is linked
to the microscopic Multi-Agent Transport Simulation (MATSim). Afterwards, the extended algorithm will be applied
to a case study focusing on food retail distribution in Berlin, Germany. Based on the simulation results, we will finally
show and discuss the impacts of BEVs on the freight transport demand in food retailing.

2. Methodology

VRPs are used to "determine a set of vehicle routes to perform [...] transportation requests with the given vehicle
fleet at minimum costs" (Irnich et al., 2014). In our study, VRPs have to be solved to generate tours in urban freight
transport. We use jsprit, an open source VRP-solver (jsprit, 2018), which can be linked to the open source transport
simulation software MATSim (Horni et al., 2016). To generate realistic tours for BEVs in urban freight transport,
we consider a range restriction of these vehicles. We implement this constraint as an extension of the VRP. In the
following, we will describe the methodological procedure to implement this extension. The aim is to generate only
routes which consider the maximum range of the respective vehicle type.

We assume that conventionally diesel vehicles can perform an infinite range, as they can refuel as often as they
want to continue the route without any significant loss of time. If electric vehicles are used, it is assumed that they
start their tour fully charged and must handle their route without recharging. A scenario in which the vehicles can
be recharged is currently not integrated and is also not trivial to implement. In a real network where there is hardly
any charging infrastructure, this would also require major investments. We assume that a charging infrastructure for
recharging during the route is not necessary since the mileage performed within the investigated urban area and within
a business day can be carried out by an electric-driven vehicle without recharging. Hence, charging infrastructure is
only necessary at the vehicle depot.

Figure 1 shows the functionality of the introduced range constraint. Fulfilled means that inserting the job into the
tour is allowed. In contrast to this, not fulfilled defines that an insertion of this job is not possible. The program code
of the range constraint is available online (see https://github.com/matsim-org/matsim-libs repository).

The improved range constraint is integrated in the VRP solving algorithm. The tour range of each vehicle type
depends on the battery and the specific consumption. Based on this, it is not possible to generate a route which is
longer than the maximum range of each vehicle type. The first step to insert the constraint is to collect the consumption
and the battery capacity for each electric vehicle type. Thereby, we enable to set the maximum range for each vehicle
type separately. In order to implement the range restriction, a prerequisite is to integrate the distance calculation in the
VRP solving process. The conventional cost matrix used for jsprit only contains the costs for one route with a specific
departure time between two locations of each vehicle type, since the costs are usually used as the decisive criterion.
Therefore, the network-based distances are added to this matrix. Now, we get the distance between every location pair
in the network. This distance is calculated as the sum of the links lengths.

Using the range constraint for a VRP, the constraint is checked at each part of changing the route. These changes
could be the usage of a different vehicle type or adding a new job to the tour. Therefore, the method of the constraint
is called which verifies whether all conditions for the route of the corresponding vehicle type are still fulfilled for
the change made. If this is not the case, the examined change in the route is rejected. By this method, all suitable
investigations for the range restriction of the electric vehicles are integrated.

The functionality illustrated in Figure 1 shows that the range restriction applies to vehicles with a certain energy
capacity. If a fuel capacity is also set for an ICEV, the constraint also works for the conventional vehicle. We assume

https://github.com/matsim-org/matsim-libs
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that when a new pickup element should be added to the tour, the related delivery element is also included. In this
context, the algorithm searches the minimal additional distance for each possible position of the delivery in the tour.
Therefore, when accepting a pickup, this minimum distance is taken into account.

Fig. 1. Functionality of the range constraint.

In conclusion, we can include several vehicle
types with different ranges in one scenario. Besides
BEVs, vehicles without range limitations can also
be integrated to make the VRP solvable if some of
the locations are out of the range of BEVs. Each
vehicle type has different costs. These input pa-
rameters are the basis for the objective function of
jsprit which aims for minimizing the total costs of
one VRP.

After jsprit selects the most cost-effective vari-
ant according to the specified number of iterations,
the route planning is completed, and the problem
is solved. Afterwards, MATSim is started and exe-
cuted.

3. Case study: Urban food distribution

In the framework of this case study, we inves-
tigate the food retail distribution in Berlin, Ger-
many. This study was developed with by Gabler
et al. (2013); Schröder and Liedtke (2014) and is
modified for the present study.

In the baseline scenario, we focus on the tradi-
tional freight transport in urban food retail distri-
bution carried out by diesel vehicles. In further scenarios, the baseline scenario is extended by including electric
trucks with specific vehicle characteristics. The expected effects are the changed fleet composition and possibly the
increased number of trips and mileage performed and as a result increased power consumption, transport costs and
GHG-emissions. To apply the newly introduced functionality, MATSim (Horni et al., 2016) and the linked route
optimization jsprit (jsprit, 2018) are used for modelling and simulating these scenarios.

The present study uses the road network of the MATSim Open Berlin Scenario (https://github.com/
matsim-scenarios/matsim-berlin) (Ziemke et al., 2019). For our simulation we dispense with the passenger
transport, since we only investigate the changes regarding the generated freight transport in food retailing sector. For
generating adequate routes and travel times also in the tour planning, we are using a time-dependent network (Rieser
et al., 2016) which uses the link travel times from the simulation output of the MATSim Open Berlin Scenario.

3.1. Baseline scenario: Food distribution by diesel-driven trucks

In the baseline scenario, deliveries to the food retail branches are carried out by diesel trucks with a permissible
total weight (ptw) of 7.5t, 18t, 26t and 40t. The 17 locations of the distribution centers and the 1,040 locations of
the branches of the food retail chains are collected and georeferenced. A distinction is made between nine different
German retail chains. These retailers could be also differentiated into supermarkets, discounters and self-service stores.
Based on this, there are 15 carrier types determined in the observed system. The locations of each retail chain are
assigned to the associated distribution centers. Furthermore, the freight demand per branch for an average business
day is derived. The various products are aggregated into the following three groups: (i) fresh, (ii) frozen and (iii) dry
goods. As a result, in total 45 carriers are modelled independently. Estimating the daily quantity demanded by the
retail branches is based on a retailer’s annual sales. As a result, the freight demand for each retail branch for Berlin is
derived (Gabler et al., 2013). Determining the delivery time window for each branch we assume that frozen and dry
goods are delivered within the time window between 9:00 a.m. to 7:00 p.m. and fresh products between 4:00 to 9:00
a.m. (Martins-Turner and Nagel, 2019).

https://github.com/matsim-scenarios/matsim-berlin
https://github.com/matsim-scenarios/matsim-berlin
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In this case, each retailer is his own logistics service provider and their distribution centers are also the vehicles’
depots. Each distribution center is equipped with its own fleet consisting of the various truck types with their corre-
sponding vehicle characteristics (including ptw, vehicle capacity, transport costs, fuel consumption; see Table 1). The
vehicle capacity of the vehicles used to deliver fresh and dry goods is measured on the max. number of euro pallets
that fit on the loading area of each truck type. In contrast, the measurement unit freezer box is used for the vehicle
capacity for the distribution of frozen goods. We assume that three minutes for each stop (constant stop time) and
additionally one minute for the concrete delivery or pickup of the single pallet to/from the branch (variable stop time)
is needed.

By means of a transport cost calculation (TCC), we can derive the variable (distance-dependent), the fixed and the
personnel (time-dependent) costs. For the TCC, we use the parameter values prepared by Martins-Turner et al. (2020)
which are based on the German Bundesverkehrswegeplan (BVWP, Federal Transport Plan, BMVI, 2016). Since the
BVWP has a national economic perspective, taxes and insurances are not included in the cost calculation (PTV et al.,
2016). For calculating the time-dependent transport costs, data, driver wages for representative vehicle types are also
given in Planco et al. (2015). In contrast, taxes except the sales tax (VAT) and insurances are relevant for the carrier.
For this reason, we have to consider these costs components in our TCC. Therefore, we use the data provided by
Eurotransport (2017).

As a basis for route optimization, it can be determined whether the logistics service provider has a fixed number
of trucks or he independently determines the need for vehicles as part of route optimization. Here, we assume that he
has an infinite fleet and uses the optimal number of vehicles to distribute the goods. Therefore, the fleet composition
is a result of the VRP (Schröder and Liedtke, 2014; Gabler et al., 2013). The food retailers transmit to the logistics
service provider both their freight demand to be delivered and the time window at which they should be delivered.
The retail branches are supplied from their distribution centers. If more than one distribution center is available, a
multi-depot VRP is solved. One vehicle can perform several tours per day (Martins-Turner and Nagel, 2019). Table 1
shows an overview of the parameter values used in the baseline scenario. These values are based on Gabler et al.
(2013); Martins-Turner and Nagel (2019); Martins-Turner et al. (2020); Planco et al. (2015).

3.2. Scenario: Food distribution by electrified trucks

In this scenario, we use exactly the same input data as for the baseline scenario. In addition, we introduce BEVs.
Hence, deliveries to the food retail branches can also be carried out by electric-driven trucks with a ptw of 7.5t, 18t,
26t and 40t. In this context, we point out that a larger ptw is allowed within the European Union when using a clean
propulsion system (PARLIAMENT and UNION, 29.04.2015). We assume that the battery size is designed in a way
that both BEVs and ICEVs have the same payload capacity. We determine that only 70% of the theoretical (gross)
battery capacity is used as (net) capacity for the tour planning to ensure an adequate battery lifetime and to maintain
a reserve for unexpected energy consumption.

With regard to the transport costs calculation of BEVs, Martins-Turner et al. (2020) provide two different cost
schemes which only differ in the chassis costs: i) based on a market analysis assuming that the chassis prices of
BEVs are 1.6 times as high as those of ICEVs and ii) based on Fuessel (2017) assuming that the chassis prices of
BEVs will correspond to those of ICEVs from the moment mass production will start. For our case study, we will
use the more future related assumption, using the cost values for equal chassis prices for BEV and ICEV (BEV100 in
Martins-Turner et al. (2020)). Table 1 shows the resulting costs.

As already discussed, an additional tax on GHG-emissions for ICEVs is suitable to supports the change from
ICEVs to BEVs. By such a tax the variable costs per distance for the ICEVs increases and thereby, the BEVs become
more attractive. This tax should internalize the external costs for emitting GHG-emissions. Assuming a well-to-wheel
production of 3.17kgCO2/liter diesel (DIN EN 16258:2012, 2013), 1 e tax per ton of CO2 leads to additional costs
of 0.00317 e/liter diesel. If the (high) value of 300 e/ton is set as an end point for a rapid change towards a greener
transport system, the additional costs are 0.951e/liter diesel.

The newly implemented range constraint is now applied for the BEVs. The ICEVs are not restricted in their range
for tour planning. As a consequence, each carrier gets its own fleet composition with BEVs and/or ICEVs as a result
of the tour planning algorithm. Since the algorithm is cost-oriented, the fleet composition depends on the different
cost structures of the vehicle types provided.
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Fig. 2. Observed distances driven by each vehicle type in the BEV scenario with 300 e/t tax on CO2-emissions for the ICEVs: Without (left) and
with (right) usage of improved algorithm.

Table 1. Describing the scenarios: Characteristics of the ICEVs and BEVs.

Vehicle types ICEVs BEVs
Trucks 7.5 t ptw to deliver fresh and dry (frozen) goods
Vehicle capacity 10 (70) 10 (70) P/T (B/T)
Fixed costs 63.49 74.76 e/day
Variable costs 0.00040 0.00046 e/m
Time-dependent costs 0.00490 0.00490 e/s
Diesel consumption 0.0001357 l/m
Energy consumption 0.00061 kWh/m
Battery capacity gross (net) 87 (60.9) kWh
Trucks 18 t ptw to deliver dry goods
Vehicle capacity 16 16 P/T
Fixed costs 80.47 92.26 e/day
Variable costs 0.00065 0.00055 e/m
Time-dependent costs 0.00490 0.00490 e/s
Diesel consumption 0.0003319 l/m
Energy consumption 0.00106 kWh/m
Battery capacity gross (net) 122 (85.4) kWh
Trucks 26 t ptw to deliver fresh and dry (frozen) goods
Vehicle capacity 24 (160) 24 (160) P/T (B/T)
Fixed costs 82.60 111.90 e/day
Variable costs 0.00067 0.00072 e/m
Time-dependent costs 0.00490 0.00490 e/s
Diesel consumption 0.0003319 l/m
Energy consumption 0.00150 kWh/m
Battery capacity gross (net) 286 (200.2) kWh
Trucks 40 t ptw to deliver dry goods
Vehicle capacity 33 33 P/T
Fixed costs 126.58 183.93 e/day
Variable costs 0.00069 0.00078 e/m
Time-dependent costs 0.00559 0.00559 e/s
Diesel consumption 0.0003754 l/m
Energy consumption 0.00180 kWh/m
Battery capacity gross (net) 443 (310.1) kWh
Legend: P=palettes, B=boxes, T=trips, l=liter, kWh=kilowatt hours

In Table 1 we present the resulting cost struc-
ture. It should be noted that the transport costs of
BEVs are higher in comparison to these of ICEVs
with the same ptw due to the additional battery
costs. We combine this scenario with different vari-
able costs per distance for the ICEVs to investigate
the effects of the GHG-emissions tax.

4. Results

In the following, we show the results of the sim-
ulation. We compare the baseline scenario (only
ICEVs) with the BEV scenarios using the im-
proved algorithm concerning fleet composition,
mileage performed and GHG-emissions. For sup-
plying the remaining stores in the BEV scenar-
ios, ICEVs are allowed as well. With an in-
creasing amount of taxes on GHG-emissions for
ICEVs, the probability for choosing BEVs instead
of ICEVs increases. Furthermore, we will present
the BEV scenario without the improved algorithm
to show the effectiveness of the range constraint.

Effectiveness of the improved algorithm. Figure 2
shows the tour distances driven for each vehicle
type of the BEV scenarios. We illustrate the results
without (left side) and with (right side) the range
constraint for the BEV trucks. As expected, the ob-
served tour distances of the BEV trucks are shorter
when using the constraint in comparison to the dis-
tances without using the limitation.

Applying the range constraint leads to an in-
creased usage of ICEVs, because the maximum tour length is not suitable to reach all shops. Since vehicles are
allowed to reload goods during their tour and some depots are further away from their shops, there are some trucks
driving even longer tours than the rest. This leads to a gap in the observed tour length.

As in reality, the vehicles may choose other routes between their stops within the traffic simulation, compared to
the tour planning. Therefore, we observe for some tours slightly longer distances than allowed by the (net) battery
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Table 2. Results of usage per vehicle type depending on GHG-tax for ICEVs — number of vehicles per day.
scenario tax add. costs 7.5 tons 18 tons 26 tons 40tons total

[e/ton CO2] [e/liter] ICEV BEV ICEV BEV ICEV BEV ICEV BEV ICEV BEV

base 0 - 17 - 15 - 223 - 40 - 295 -

BEV and
ICEV with
range
constraint

0 - 15 1 4 5 200 37 27 0 246 43
25 0.079 16 2 4 7 176 56 27 0 223 65
50 0.159 18 1 2 8 170 59 27 0 217 68

100 0.317 14 4 2 12 140 87 26 2 182 105
150 0.476 18 3 2 17 127 109 26 2 173 131
200 0.634 15 5 1 20 108 123 26 2 150 150
250 0.793 18 6 0 25 86 141 26 2 130 174
300 0.951 14 6 0 23 56 183 26 2 96 214

Table 3. Results of usage per vehicle type depending on GHG-tax for ICEVs — kilometers driven per day.
scenario tax add. costs 7.5 tons 18 tons 26 tons 40tons total

[e/ton CO2] [e/liter] ICEV BEV ICEV BEV ICEV BEV ICEV BEV ICEV BEV

base 0 - 1 800 - 2 099 - 26 863 - 5 994 - 36 755 -

BEV and
ICEV with
range
constraint

0 - 1 642 16 559 383 26 201 2 877 5 992 0 34 393 3 277
25 0.079 1 883 96 442 519 24 482 4 447 5 995 0 32 802 5 062
50 0.159 2 092 16 210 588 23 916 4 668 5 991 0 32 209 5 272

100 0.317 1 635 156 292 895 20 769 7 231 5 919 174 28 616 8 455
150 0.476 2 514 116 271 1 231 17 828 9 302 5 919 174 26 530 10 823
200 0.634 2 206 247 201 1 462 15 867 11 116 5 884 174 24 158 12 998
250 0.793 2 579 264 0 1 808 13 360 12 965 5 880 174 21 819 15 210
300 0.951 2 189 359 0 1 619 9 421 17 230 5 879 174 17 488 19 382

capacity. 98% of the measured tours are within the calculated range or exceed it by max. 5%. Only two of 214 tours
exceed the plan-able range by >10 %. The most deviating tour is 19% longer. This is still feasible, because the VRP
algorithm gets a plan-able (net) battery capacity for the vehicle type which is only 70% of the (gross) battery capacity
(see Sec. 2), leading to an available reserve to exceed the plan-able range by ≈ 43%. Furthermore, some of the tours
planned with ICEVs are capable to be driven with BEVs.

Fleet composition, distances driven and influence of the CO2-tax for diesel-driven trucks. In our study, the fleet
composition is a result of the tour planning. While 295 ICEVs are necessary to serve the demand in the baseline
scenario, the number of vehicles used per day in the BEV scenario depends on the amount of the CO2-tax for the
ICEVs (see Table 2). Without any tax on GHG-emissions, 246 ICEVs and 43 BEVs are used. A tax of 300 e/t CO2
will result in a fleet of 96 ICEVs and 214 BEVs. This drastic change results from the higher fuel price and therefore
higher variable costs per distance for the ICEVs as well as the cost-based objective function of the VRP algorithm.
Due to the limited range of the BEVs, an increased usage of BEVs leads to more vehicles needed in total. Again, there
are ICEV tours which could be driven one-by-one with BEVs of the same ptw.

Table 3 shows the results on the kilometers driven. In all BEV scenarios in total more vehicle kilometers are
measured than in the baseline scenario. Due to the limited range of the BEVs, the observed shift from ICEVs to BEVs
regarding the kilometers driven is not as strong as the shift with regard to the number of vehicles used.

Well-to-Wheel GHG emissions. We apply the Well-to-Wheel (WTW) methodology according to JRC et al. (2014) to
analyze the environmental impact of the simulated scenarios. The WTW-methodology includes the GHG-emissions
from the production of diesel and electricity as well as from their use in the vehicles. Based on the observed distance
travelled from the transport simulation (see Table 3), vehicle type specific energy consumption and the specific CO2-
emissions factor per energy unit, we calculate the Well-to-Wheel GHG-emissions. The vehicle type specific fuel
consumption is assumed for the ICEVs between 13.57 l diesel/100 km (7.5 tons truck) and 37.45 l diesel/100km (40
tons truck). The electricity consumption of the BEVs is between 61 and 180 kWh/100km (see Table 1).

We assume 250 business days per year (Planco et al., 2015) and a factor of 3 170 g CO2/liter diesel (DIN EN
16258:2012, 2013). For showing the influence of the electricity production, three different emission factors are
identified in the state of the art: 518 gCO2eq/kWh for the electricity production in 2018 (Icha and Kuhs, 2019),
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347 gCO2eq/kWh in 2030 and 25 gCO2eq/kWh for renewable energies (Wietschel et al., 2019). The values per year
for the different scenarios are shown in Figure 3.

Base Tax = 0   Tax = 25 Tax = 50 Tax = 100 Tax = 150 Tax = 200 Tax = 250 Tax = 300
0
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Fig. 3. Calculated CO2-emissions per year for the baseline and the BEV scenarios (tax on CO2-
emissions on ICEVs from 0 to 300 e/t) with range constraint. The emissions of the BEVs are
shown for three different energy sources: energy mix for Germany 2018 (red), for Germany
2030 (blue), renewable only (green). The emissions from the ICEVs are marked in gray.

As a consequence of the shift
from ICEVs to BEVs due to the in-
creasing GHG-tax, the total W2W-
GHG-emissions decrease. The usage
of clean(er) electric energy has a huge
impact in the BEV scenarios. The an-
nual GHG-emissions decrease from ≈
9 600 tons in the baseline scenario to ≈
4 600 tons (- 5 000 tons) when promot-
ing the change to use BEVs (tax = 300)
and using only renewable electricity.
Assuming the German electricity mix
from 2018, the GHG-emissions would
be ≈ 8 100 tons/year (- 1 500 tons).

5. Conclusion and Outlook

We present the methodological pro-
cedure to implement a constraint for
a vehicle routing algorithm which re-
stricts the planned tour distance. By the new vehicle type specific method, energy consumption and energy capacity
for each vehicle type can be independently defined. The new algorithm was applied to an existing case study focusing
on food retail distribution in Berlin, Germany. The solution includes that the carriers can choose between different
vehicle types. For each maximum payload one diesel-driven and one electric driven is provided. We assumed that only
the BEVs have a limited range due to their battery capacity. ICEVs can be used as fallback solutions if BEVs are not
sufficient.

We showed that the algorithm works as expected. A small number of observed tours in the traffic simulation are
exceeding the plan-able range. But even the tour with the largest divergence needs less than the half of the included
tolerance. We increased the (variable) costs for the ICEVs by introducing taxes on GHG-emissions in the framework
of the BEV scenarios. Thereby, we observed an increasing switch from the usage of ICEVs to BEVs. In addition,
due to the limited range of the BEVs, a slight increase of the total number of vehicles used and kilometers driven
can be determined in comparison to the baseline scenario with only ICEVs. For the corresponding Well-to-Wheel
GHG-emissions we assumed different electricity mixes. We can state that GHG-emissions decrease by more than
50% from approx. 9 600 to 4 600 tons/year when using renewable electricity. Assuming the emissions based on the
energy production in Germany in 2018 the decrease in the same scenario would be 15% (−1500 tons). In contrast to
ICEVs, the BEVs have the potential to become more environmentally friendly, without additional investments into
the vehicle fleet, just by using an energy mix with increasing the proportion of renewable energy. Furthermore, there
is either a need for a strong regulation toward the usage of BEVs or for promoting the change by market reactions and
making the usage of BEVs cheaper than the usage of ICEVs. Besides e.g. subsidizing the purchase costs of BEVs,
this could be easily implemented by introducing a significant GHG-emissions tax on ICEVs.

The results also show that there are some tours planned with ICEVs, even when the same-sized BEVs would be
able to carry out it. It seems that the VRP algorithm does not find the best suitable fleet composition. This is probably
due to the objective function, which is only cost-oriented, and due to a missing strategy to replace vehicle types.
The provided improvement of the algorithm does not include any recharging during the tour, neither at the shops nor
during loading goods at the depot. Due to the stop times we can assume that an installation of charging infrastructure at
some longer stops and at the depots for recharging during reloading goods would be possible. Including recharging at
(defined) locations would allow to drive longer distances with the electric-driven trucks without or with only less extra
time. As a consequence, the usage of BEVs would become more efficient. In this context, further research questions
could be, where such recharging infrastructure could be located. Another improvement would be to include a more
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detailed energy consumption calculation model which takes into account e.g. road gradients or congestion. Further
research studies should investigate the limits of electrification, e.g. by running scenarios with BEVs with a higher
battery capacity, even if this results in less payload due the higher weight. This could be extended by running the
electrification scenarios with electric trucks with different battery capacity for each vehicle type.
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