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Abstract

This study proposes a simulation-based heuristic for the optimization of (au-
tonomous) ride-hailing services which is applicable to large-scale and real-world case
studies. A software tool is provided as an extension of the existing agent-based simula-
tion framework MATSim. The proposed optimization approach uses an outer loop to
adjust ride-hailing service parameters and an inner loop to simulate transport users’
reactions to the ride-hailing service. For the rural region of the Vulkaneifel (Volcanic
Eifel) in Germany, in different simulation experiments, the fare, fleet size and service
area are separately adjusted based on predefined control variables (90th waiting time
percentile or number of ride-hailing users). The simulation experiments reveal that
the ride-hailing service adjustment strategies have a significant impact on the level of
service. Waiting times are successfully reduced by applying a fare surcharge during
peak times, by increasing the ride-hailing vehicle fleet and by reducing the service area.
For a 90th waiting time percentile of 600 sec, a fleet size of 120 vehicles is required and
for 900 sec only half the fleet size is required. Besides optimizing an existing service,
the proposed tool allows for a more accurate estimation of demand levels for future
on-demand mobility services.

1 Introduction and problem statement

In the last years, several companies have provided App-based on-demand mobility services
(e.g. UBER, Lyft, BerlKonig, CleverShuttle), also referred to as ride-hailing or demand
responsive transit (DRT). In some cities or regions these services are an essential part of the
public transport sector and it is impossible to imagine life without them. In other places,
however, these services are rather an optional addition to the existing public transport
system. The services then primarily compete with local taxi companies. The introduction
of autonomous vehicles and the resulting elimination of personnel costs could lead to
a reduction in operating costs 0.30 to 0.38 EUR per passenger-km (Bosch et al., 2018;
Trommer et al., 2016), reducing user costs and further enhancing the attractiveness of



ride-hailing services. Like regular transit operators, operators of on-demand mobility
services need guidance on how to change their today’s service in order to increase their
profit, increase the number of users or reach a predefined level of service quality. In
contrast, municipalities may need guidance on how to regulate the existing ride-hailing
services in order to improve overall system welfare or follow a political agenda, e.g. a
modal shift from private cars to environmental friendlier modes. This study provides a
first methodological approach to address such questions for on-demand mobility services.

The optimization of public transit services has been addressed in several studies. The plan-
ning process in public transportation is usually divided into sequential planning phases,
moving from a strategic to an operational level: network design, line and frequency plan-
ning, timetable development, vehicle scheduling, and crew scheduling (e.g. Ceder and
Wilson, 1986; Borndorfer et al., 2007; Schobel, 2012). In contrast, flexible mobility ser-
vices heavily rely on a supervising structure. Often a controller is in charge with allocating
resources (vehicles) to the collected trip requests, solving the so-called dynamic pickup and
delivery problem (Cortés, 2003; Pagés et al., 2006; Fernandez et al., 2008; Cortés et al.,
2008; Saez et al., 2008). Consequently, for flexible on-demand mobility services, the op-
timization parameters and planning steps are very different from schedule-based public
transit. Most relevant design elements are the service area, fleet size, pricing system,
vehicle sizes, operation modes (e.g. with or without pooling) and rebalancing strategies.
Autonomous vehicle technology provides additional chances and challenges that have been
addressed in various studies (Narayanan et al., 2020).

For on-demand mobility services, Maciejewski and Bischoff (2015) looked into different
fleet sizes and resulting waiting times. The authors find that above a certain thresh-
old, increasing the fleet size only yields a minor change in service quality (see Fig. 5 in
Maciejewski and Bischoff (2015), also see Fig. 6.1 in Bischoff (2019)). In Bischoff and
Maciejewski (2016) and Bischoff (2019), simulation experiments are carried out for a fixed
travel demand without mode choice. Thus, the impact of different fleet sizes on the at-
tractiveness of the ride-hailing mode and the resulting number of users is not accounted
for. Bischoff et al. (2018) developed a simulation-based heuristic to optimize the service
area of on-demand mobility providers. Different decision criteria are used to adjust the
ride-hailing service area and analyze the operator’s profit: the average vehicle occupancy
per zone, the revenues per zone or a combination of both. Again, a weakness in Bischoff
et al. (2018) is that travel demand is fixed and mode choice reactions are not accounted for.
In contrast, Zhao and Kockelman (2018) account for mode choice reactions and evaluate
the impact of different pricing concepts for shared autonomous vehicles on total vehicle
kilometers traveled. Mode choice reactions are also accounted for by Horl et al. (2019) who
address the estimation of demand levels and fleet sizes for on-demand mobility services.
In a first setup, Horl et al. (2019) vary the fleet size and keep the distance-based fare at a
constant level. Consequently, the resulting number of trips increases monotonically with
the fleet size. In a second setup, the distance-based fare is computed based on the operat-
ing cost for each fleet size level and resulting fleet utilization. In consequence, very large
fleet sizes translate into high fares and the number of users decrease. In the dynamic fare
case, a maximum number of 1.2 million trips is obtained for a fleet size of 25 thousand ve-
hicles operating within the Boulevard Périphérique of Paris. Kaddoura et al. (2020a) also
account for mode choice and use an agent-based approach to optimize on-demand mobility
services. For a fixed fleet size, a user-specific congestion charge is added to the fare which
controls the number of users. Simulation experiments are carried out for Berlin, Germany,



and the impact of different pricing concepts on the overall transport system is analyzed.
Vosooghi et al. (2019) use an agent-based simulation approach to investigate the modal
split and vehicle kilometers traveled for different ride-hailing fleet sizes and vehicle types.
For a parametric study, Vosooghi et al. (2019) find the vehicle fleet size and rebalancing to
have a major impact on the ride-hailing demand level and performance. Kaddoura et al.
(2020b) investigate the impact of pricing and service area design on mode shift effects
towards on-demand mobility concepts. Both, the pricing and service area are found to
be effective levers to achieve the desired mode shift effect and avoid cannibalization of
the schedule-based public transit system. Neumann (2014) developed a co-evolutionary
approach to identify profitable minibus services where the schedule adapts to the demand
level forming a hybrid concept between conventional public transit and on-demand ride-
hailing services. The approach had been successfully applied to the Nelson Mandela Bay
Area Municipality in South Africa (Neumann et al., 2015) as well as in the metropolitan
area of Berlin (Neumann, 2015).

Overall, the literature shows that there are only a small number of studies in which the
optimization of ride-hailing services is addressed in the context of large-scale and real-
world case studies. This study proposes a simulation-based approach for the optimization
of (autonomous) ride-hailing services which is applicable to large-scale and real-world case
studies. A software tool is provided as an extension of an existing agent-based simulation
framework. The provided tool is expandable and configurable for various use cases and
optimization objectives.

2 Methodology

2.1 Agent-based transport simulation framework

MATSim overview The proposed heuristic uses the agent-based and dynamic trans-
port simulation framework MATSim! (Horni et al., 2016). In MATSim, transport users
are simulated as individual agents. Each agent adapts to the transport supply (road net-
work, ride-hailing service quality, fares) following an evolutionary iterative approach which
consists of the following three steps:

1. The traffic flow is simulated. Private cars and ride-hailing vehicles interact on the
same network based on a queue model which accounts for dynamic congestion and
spill-back effects (see Fig. 3).

2. Each agent evaluates his/her daily (travel) plan taking into consideration (i) the util-
ity from being at an activity and (ii) the travel-related disutility, including monetary
cost components.

3. Some agents are enabled to adjust their behavior, e.g. switch to another route or
mode of transportation. The other agents choose among their existing plans following
a multinomial logit model.

MATSim ride-hailing module (DRT module) The simulation of on-demand mo-
bility services uses an existing module for dynamic vehicle routing problems (Maciejewski,

!Multi-Agent Transport Simulation, see www.matsim.org



2016; Maciejewski et al., 2017) and an existing module for the simulation of ride-hailing
services (Bischoff et al., 2017). Throughout the simulation, agents will try out different
modes of transportation, including the ride-hailing mode. Users first walk to the next
road segment (virtual DRT stop) within the ride-hailing service area and then request a
ride. The trip request is then assigned to a vehicle which can serve the trip request while
maintaining certain service quality criteria for the new passenger and the passengers that
are already using or scheduled to use the same vehicle. The vehicle dispatching heuristic
minimizes the total vehicle operation time for serving trip requests. If the ride-hailing
system is at its capacity limit and trip requests cannot be served within the predefined
service quality criteria, the request will not be rejected but assigned to the vehicle causing
the least additional operation time. After the user arrives at the destination road segment
(virtual DRT stop), the user walks to the destination.

2.2 Ride-hailing service optimization

The proposed ride-hailing service optimization heuristic uses an outer loop to adjust ride-
hailing service parameters and an inner loop to simulate transport users’ reactions to the
service.

1. Provide some initial service parameters (fare, fleet size, service area).

2. Inner loop: Let the travel demand adapt to the ride-hailing service based on the
iterative learning approach described in Sec. 2.1:

(a) Traffic flow simulation
(b) Plan evaluation

(c¢) Plan selection and modification

For the final iterations in the inner loop, innovative strategies (mode choice, depar-
ture time choice, route choice) are switched off and transport users only select a
travel option based on their existing choice sets.

3. Compute a decision variable, e.g. the service level (90-percentile waiting time) per
time of day, the number of users or the operator’s profit.

4. Adjust some ride-hailing service parameters, e.g. increase or decrease a fare sur-
charge per time of day, increase or decrease the vehicle fleet or expand or reduce
the service area. For the adjustment of ride-hailing service parameters, different
controllers may be used, for example a simple approach with constant parameter
changes or a proportional controller where the adjustment size depends on the devi-
ation of the decision variable between the target value and the current value observed
in the simulation.

5. Go to 2.

The ride-hailing service optimization module which may be used as an extension to MAT-
Sim is currently located on the following repository: https://github.com/matsim-vsp/
opt-drt. For the simulation experiments carried out in this study the code version of 29
June 2020 (commit ID 8fe7d0a) was used. A first prototype of the ride-hailing optimization
module is available since summer 2019.


https://github.com/matsim-vsp/opt-drt
https://github.com/matsim-vsp/opt-drt

3 Case study and simulation experiments

3.1 Case study: Vulkaneifel, Germany

In this study, simulation experiments are carried out for the sparsely populated rural
region of the Vulkaneifel (Volcanic Eifel), Germany. The activity-based transport model
is provided as an excerpt from the nation-wide MATSim model of Germany by Senozon
Deutschland GmbH (www.senozon.com). The transport network is generated based on
OpenStreetMap (www.osm.org) data and contains all roads in the Vulkaneifel and its
surrounding area. Public transit supply is generated using GTFS data and contains all
public transit lines in and around the Vulkaneifel area. The walk, bicycle and ride mode
are simulated in a simplified way, neglecting interactions between users and assuming
fixed mode-specific speed parameters. In addition to regular traffic surveys, the synthetic
population is based on anonymized mobile phone data and includes all persons with an
age of 14 or older that travel from, to or through the Vulkaneifel area. Travel patterns of
the agents extend to all parts of Germany. To reduce the computational load, the least
relevant agents, i.e. agents traveling very far and thus spending most time outside the
area of interest, are removed together with the infrastructure they use. In consequence,
with about 10 % of the agents removed, the infrastructure (network and transit schedule)
still covers an area as far as Cologne, Koblenz, and the Mosel River. To travel between
activity locations, in the base case, transport users are enabled to use the car, public
transit, bicycle, ride and/or walk mode. Travel times within public transport mode result
from access/egress times to/from the transit stop, waiting times and in-vehicle times
based on simulation of real-world schedule data. In this simulation setup, buses and
tramways do not interact with ride-hailing vehicles, private cars or bicycles. To reduce
computation times, in this study, a 25% population sample is used and road capacities are
accordingly reduced to 25% of the real-world capacity. For an in-depth information of the
applied demand generation methodology, in particular the Mobility Pattern Recognition,
see (Neumann and Balmer, 2020).
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Figure 1: Vulkaneifel area; Background map: ©OpenStreetMap Contributors (www.osm.org)
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3.2 Ride-hailing service and simulation setup

A ride-hailing service is added to the existing modes of transportation which may be used
for trips or trip parts starting and ending within the service area. In different simulation
experiments, initial ride-hailing parameters (service area, fleet size, fare) are set differently
and are either fixed or changed throughout a single simulation run. The service allows
for pooling (ride-sharing) and the vehicle capacity is set to 4 passengers. The fare is set
to 1.50 EUR/km with a minimum fee of 4 EUR. In the first iteration, the vehicles are
randomly distributed within the service area. Then, in each iteration, vehicles remain
on the link where the last drop off took place in the iteration before. The pick-up and
drop-off duration is set to 1 minute. Ride-hailing vehicles interact with other ride-hailing
vehicles as well as private cars. In this study, the ride-hailing service may not be used as
an access or egress mode within public transport trips.

All transport users are allowed to change their transport routes, departure times and
modes of transportation. For each sub-tour, i.e. trip chains starting and ending at the
same activity location, the transport mode may be changed to only car, only bicycle
(chain-based modes) or a combination of public transit, ride-hailing, (private) ride and
walk. Each agent’s choice set is limited to 3 travel plans. All simulation experiments are
run for a total of 600 iterations. During choice set generation (first 480 iterations), in
each iteration the share of agents who change their mode, route and departure time is
set to 10% per choice dimension. In the final 120 iterations, all agents select from their
existing daily travel plans (choice sets) based on a multinomial logit model. Behavioral
parameters for the ride-sharing service and the marginal utility of money are taken from
a model which has been calibrated and validated against real-world ride-hailing trip data.
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3.3 Simulation experiments
The following simulation experiments are carried out.

e Fixed ride-hailing service (DRT-0): In this simulation experiment the ride-
hailing service optimization heuristic described in Sec. 2.2 is disabled. The ride-
hailing fleet size is fixed to 50 vehicles. There is no fare surcharge and the service area
is fixed to the entire Vulkaneifel region. This simulation experiment is considered as



the base case and is used as a benchmark for the other simulation experiments in
which the ride-hailing service is adjusted.

Fare adjustment (DRT-fare): In this simulation experiment, only the fare strat-
egy is applied and a simple control mechanism is applied which either increases or
decreases a fare surcharge depending on the target waiting time (90th percentile)
per 3-hour time bin:

— DRT-fare-A: 300 sec
— DRT-fare-B: 600 sec
— DRT-fare-C: 900 sec

The control mechanism increases or decreases the fare surcharge by 1 EUR/km
applying the method of successive averages. The initial fare surcharge is 0 EUR. The
fleet size is fixed to 50 vehicles and the service area is fixed to the entire Vulkaneifel
region.

Fleet size adjustment (DRT-fleet): In this simulation experiment, only the
fleet size strategy is applied and a simple control mechanism is applied which either
increases or decreases the fleet size by 10% (and a minimum of 1 vehicle) depending
on the 90th waiting time percentile:

— DRT-fleet-A: 300 sec
— DRT-fleet-B: 600 sec
— DRT-fleet-C: 900 sec

The fleet is expanded by randomly selecting and cloning an existing ride-hailing
vehicle, including the position in the network. The initial fleet size is set to 50 vehi-
cles. There is no fare surcharge and the service area is fixed to the entire Vulkaneifel
region.

Service area adjustment (DRT-area): In this simulation experiment, only the
service area strategy is applied and a simple control mechanism is applied which
expands and reduces the service area by a certain number of hexagon grid cells
depending on the number of ride-hailing users:

— DRT-area-A: 1 DRT user

— DRT-area-B: 10 DRT users

— DRT-area-C: 20 DRT users
For all hexagon grid cells where the demand level is below the threshold, 10 grid cells
are randomly chosen to be removed from the service area. Also, 10 new hexagon grid
cells are randomly chosen and then added to the service area. The hexagon grid cells

have a spacing of 3 km. The initial service area is set to the entire Vulkaneifel region.
There is no fare surcharge and the ride-hailing fleet size is fixed to 50 vehicles.



4 Results

4.1 Ride-hailing service parameters

The simulation experiments reveal that all ride-hailing service adjustment strategies have
a significant impact on the level of service. Waiting times are successfully reduced by
applying a fare surcharge during peak times, by increasing the vehicle fleet and by reducing
the service area.

Fig. 4 shows the resulting ride-hailing fare surcharges per time of day in the final itera-
tion. The fare surcharges depend on the predefined decision criteria (90th waiting time
percentile). In simulation experiment DRT-fare-A, the waiting time threshold (90th per-
centile) is set to 300 sec and the resulting surcharges amount to more than 2.00 EUR
during the afternoon and a bit less in the morning and evening. In the simulation exper-
iments DRT-fare-B and DRT-fare-C, the waiting time thresholds are larger (600 sec and
900 sec) and resulting fare surcharges much lower in most time periods.
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Figure 4: Fare surcharge in EUR/km per time of day

In Fig. 5, the vehicle fleet size is shown over the iterations for the simulation experiments
in which the fleet size is adjusted: DRT-fleet-A, DRT-fleet-B and DRT-fleet-C. For the
low waiting time threshold of 300 sec, in simulation experiment DRT-fleet-A, the vehicle
fleet is increased until the very end and there is no stable outcome. In contrast, for the
higher waiting time thresholds (90th percentile 600 sec and 900 sec), a relaxation of the
fleet size is observed at a level of approximately 120 vehicles in experiment DRT-fleet-B
and 60 vehicles in experiment DRT-fleet-C.
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Figure 5: Fleet size per Iteration

Fig. 6 shows the resulting ride-hailing service area in the final iteration for the simulation
experiments in which the service area is adjusted: DRT-area-A, DRT-area-B and DRT-
area-C. Increasing the demand threshold yields a concentration of the ride-hailing service
area to the more densely populated area within the Vulkaneifel, including the towns of



Daun, Gerolstein, and Hillesheim.
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Figure 6: Resulting ride-hailing service areas

4.2 Ride-hailing demand and service quality

The ride-hailing service parameters and adjustment criteria have a different impact on
the number of ride-hailing trips and the service quality. Time-dependent fare surcharges
control the number of ride-hailing users and improve the resulting ride-hailing service
quality for the remaining ride-hailing users. Most ride-hailing users are observed to switch
from ride-hailing to the (private) ride and bicycle mode. The users remaining within the
ride-hailing mode experience an average reduction in travel time of 144 sec in experiment
DRT-fare-C and 307 sec in experiment DRT-fare-B. The vehicle fleet size and service area
have a direct impact on the service level: A larger fleet size translates into more and
faster available ride-hailing vehicles which reduces waiting times and attracts additional
ride-hailing users, mainly from the public transit and bike mode. Thus, waiting times
increase until the ride-hailing vehicle fleet size is again increased. Fig. 7 shows the number
of ride-hailing trips per iteration. In experiment DRT-fleet-B and DRT-fleet-C, at some
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Figure 7: Number of ride-hailing Rides per iteration

point the gradient flattens and the resulting number of ride-hailing users (and ride-hailing
vehicles) stabilizes. Even though the ride-hailing demand is at a higher level, the users
previously using the ride-hailing mode experience a decrease in average travel time per trip
of 254 sec in experiment DRT-fleet-B and 84 sec in experiment DRT-fleet-C. Reducing the
service area has a similar effect: Some agents are no longer allowed to use the ride-hailing
mode for trips starting or ending in certain low-demand areas. Most of these users switch
to the ride and bike mode. Thus, the existing ride-hailing vehicles focus more on the
urbanized centers which yields a higher availability of ride-hailing vehicles in those areas.
For the remaining ride-hailing users the average travel time per trip is reduced by 150 sec
in experiment DRT-area-A and 250 sec in experiment DRT-area-B.

Fig. 8 shows the number of ride-hailing trips for each simulation experiment in the final



iteration. In the base case simulation experiment DRT-0, the ride-hailing users amount
to 7728 trips. The simulation experiments in which the fare is increased (DRT-fare) and
the service area is reduced (DRT-area), the number of ride-hailing trips is significantly
reduced. In contrast, the simulation experiments, in which the ride-hailing vehicle fleet
size is adjusted (DRT-fleet) the ride-hailing users increase to 10,200 trips in experiment
DRT-fleet-A, 9,228 trips in experiment DRT-fleet-B or slightly increases to 8,256 trips in
experiment DRT-fleet-C.
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Figure 8: Number of rides in the final iteration

Fig. 9 shows the 90th waiting time percentile per iteration in the base case (DRT-0) and the
different ride-hailing adjustment simulation experiments. In the simulation experiments
DRT-fare and DRT-fleet, the 90th waiting time percentile is used as the decision criteria,
thus, the observed 90th waiting time percentile quickly drops below or close to the level of
the target value, i.e. 300 sec, 600 sec, and 900 sec. An interesting fact is that, in experiment
DRT-fleet-A, the 90th waiting time percentile is never reached and stays slightly above
the target value of 300 sec. Thus, the vehicle fleet is constantly increased (see Fig. 5).
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Figure 9: 90th waiting time percentile per iteration

In Fig. 10, the resulting waiting time distribution, including the 90th percentile, is shown
for each simulation experiment. The waiting times exhibit a right-skewed distribution
with several outliers in the higher value range. In all simulation experiments in which
the ride-hailing service is iteratively adjusted, the waiting times are significantly reduced
compared to the base case simulation experiment DRT-0.

In simulation experiment DRT-fare-A, the ride-hailing demand is on a very low level, thus,
except for a few outliers, waiting times are below 300 sec. In experiment DRT-fare-B and
DRT-fare-C, the 90th waiting time percentile is slightly below the target value 600 sec

10



and 900 sec, respectively.

In simulation experiment DRT-fleet-A, DRT-fleet-B and DRT-fleet-C, the 90th waiting
time percentile is only slightly above the target value 300 sec, 600 sec and 900 sec, re-
spectively. Since the controller either increases or decreases the vehicle fleet, in simulation
experiment DRT-fleet-B and DRT-fleet-C, the fleet size oscillates around the final number
(see Fig. 7b) and therefore also the 90th waiting time percentile fluctuates around the
target value (see Fig. 9b).

The simulation experiments DRT-area-A, DRT-area-B, and DRT-area-C reveal that a
smaller ride-hailing service area reduces the 90th waiting time percentiles from 1086 sec
in experiment DRT-0 to 806 sec in experiment DRT-area-A or 451 sec in experiment
DRT-area-C.
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Figure 10: Ride-hailing Waiting Times in the final iteration (25% population sample); box: 25th
percentile, median and 75th percentile; lower whisker: 25th percentile — 1.5 x box length; upper
whisker: 75th percentile + 1.5 X box length; black circles: outliers; red : 90th percentile; blue:
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5 Discussion

5.1 Estimation of ride-hailing potentials

The developed methodology, in particular the ride-hailing vehicle fleet adjustment ap-
proach, may also be used to estimate the number of potential users of a newly introduced
ride-hailing mode. A variable fleet size which depends on the demand level allows the
consideration of a constant service quality throughout the simulation process. In contrast,
a constant fleet size seems difficult for the following reason: During the iterative learning
process, the number of ride-hailing users changes and so does the service quality. During
the phase of choice set generation, in every iteration a certain number of agents try out

11



the new mode of transportation. Users for which the ride-hailing mode seems attractive
in some early iterations for low demand levels may eventually switch back to their previ-
ous mode of transportation once the demand level increases, waiting times increase and
the service becomes less reliable. That is, the rather expensive ride-hailing service turns
from a premium mode to a much less attractive service. Thus, the resulting ride-hailing
demand may neglect certain users, in particular those with a high willingness to pay for a
fast and reliable transport service. Fig. 11 shows the occupancy time profile in iteration
400 and the final iteration 600 for simulation experiment DRT-0. During peak times,
the vehicle fleet reaches the capacity limit. That is, during peak times all ride-hailing
vehicles are moving on the network serving trip requests and there are no idle vehicles.
Note that vehicles with 0 pax are on its way to the next pick-up location of their assign
request. Fig. 12 shows the same plots for simulation experiment DRT-fleet-B in which the
fleet size is adjusted in order to keep a constant service level. The plots exhibit that in
order to guarantee a 90th waiting time percentile below 600 sec, in the applied Vulkaneifel
case study, the ride-hailing vehicle fleet needs to be large enough to provide a minimum
of approximately 60 idle vehicles at any time. A possible way out is to set the vehicle
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Figure 11: Ride-hailing occupancy time profile in simulation experiment DRT-0
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Figure 12: Ride-hailing occupancy time profile in simulation experiment DRT-fleet-B

fleet size to a very high level. On the one hand, this will prevent the ride-hailing service
from reaching the capacity limit and will always guarantee a high level of service quality.
On the other hand, however, this will underestimate waiting times because there is an
unrealistically high availability of ride-hailing vehicles. Most ride-hailing vehicles will be
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idle throughout the day or only serve a single trip request. Once the ride-hailing vehicle
fleet is reduced to a more realistic number, waiting times will increase and some users will
switch from the ride-hailing mode to other modes of transportation.

5.2 Challenges with larger numbers of ride-hailing users

In the context of sensitivity analysis, the minimum and distance-based fare was reduced
to look into the impact of autonomous driving technologies and the elimination of driver
costs. Consequently, ride-hailing demand levels are on a much higher level which also
leads to some challenges for the proposed ride-hailing service optimization approach.

Proportional ride-hailing fleet size controller Depending on the initial fleet size, a
fixed change in fleet size by 10% may require a large number of iterations until the vehicle
fleet is at a sufficient high level. Larger fleet size adjustments may reduce the number of
required iterations, however, results in strong oscillations around the final fleet size level.
A reduction in simulation time and a stable fleet size level is obtained using a proportional
controller which computes the relative change in fleet size as follows:

ni+1 = (ti - ttarget)/ttarget : Kp ‘N, (1)

where ¢ denotes the iteration, n is the number of vehicles, t; is the 90th waiting time
percentile in iteration 7, t14rget is the target 90-percentile waiting time and K, is a tuning
parameter. Additional simulation experiments are carried out for the new proportional
controller: Simulation experiment DRT-fleet-A1, DRT-fleet-B1 and DRT-fleet-C1 with
K, = 1.0 and DRT-fleet-A2, DRT-fleet-B2 and DRT-fleet-C2 with K, = 0.5.

Fig. 13 shows the changes in vehicle fleet size for the simple controller described in Sec. 3.3
and the new proportional controller. Again, for the current ride-hailing operation mode,
the target 90th waiting time percentile of 300 sec can not be reached and the ride-hailing
fleet size is constantly expanded (see Fig. 13a). In all other simulation experiments, the
simple controller and proportional controller show a similar fleet size adjustment over the
iterations and the final ride-hailing fleet size is approximately at the same level. The
tuning parameter K, slows down the adaptation speed which only has a minor impact in
Fig. 13b and Fig. 13c but a huge impact in Fig. 13a where the initial fleet size is far too
small for the target waiting time of 300 sec.
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Speeding-up simulation times For larger service areas or ride-hailing demand levels,
also simulation times may significantly increase. The proposed ride-hailing optimization
heuristic is compatible with the speed-up approach presented in Kaddoura et al. (2020b)
and, thus, allows for large-scale applications. In the speed-up approach by Kaddoura et al.
(2020b), a detailed ride-hailing assignment is only simulated in certain iteration intervals,
e.g. every 10 or 30 iterations, and in between ride-hailing users are simply teleported
applying estimates based on the waiting time, the travel speed, and the travel distance from
previous iterations. Each iteration with a detailed ride-hailing assignment then updates
the estimates. To improve the existing speed-up approach and reduce oscillations between
the detailed ride-hailing assignment simulations, a simple moving average approach was
added which takes into consideration the most recent iterations with simulated ride-hailing.
This is in particular relevant for ride-hailing fleet sizes that are reduced to just the number
of required vehicles to obtain a predefined service level. To make the speed-up approach
compatible with the proposed ride-hailing optimization approach, the iteration interval of
the outer loop in which ride-hailing service parameters are adjusted only need to match the
iteration interval in which the speed-up approach runs a detailed ride-hailing simulation.
Also, adjusted ride-hailing service parameters, for example time-specific fare surcharges,
need to be passed on to the ride-hailing speed-up approach.

5.3 Operator’s profit

In this study, the 90th waiting time percentile is used as decision variable to adjust the ride-
hailing vehicle fleet size. This may be interpreted as a ride-hailing service provider which
is regulated by the state or city administration and is forced to ensure a certain service
quality. In order to reflect an unregulated and profit maximizing mobility service provider,
the proposed approach allows for different control variables, including the operator’s profit.
In the following, the operator’s profit is estimated based on the revenues, the fleet size,
the vehicle-km, and some rough assumptions regarding the cost rates: Daily fix costs are
assumed to be 17.88 EUR per vehicle (Planco et al., 2015, see p. 284, Tab. 8-32)%. Staff
costs are assumed to be 17.64 EUR per hour (Planco et al., 2015, see p. 284, Tab. 8-
37). Staff time is calculated by summing up each ride-hailing vehicle’s daily operating
time using the first and last vehicle movement on the network. Variable vehicle operating
costs are assumed to be 0.35 EUR/km. With these assumptions regarding the cost rates,

Table 1: Estimation of the daily operator’s profit (the numbers are upscaled to a 100% scenario
sample)

Simulation experiment DRT-0 DRT-fleet-A  DRT-fleet-B DRT-fleet-C
Revenues [EUR] 124,888 154,945 142,789 131,138
Number of ride-hailing vehicles 200 19,304 448 240

Vehicle fix costs (17.88 EUR/vehicle) [EUR] 3,576 345,156 8,010 4,291

Staff time [hours] 3,628 15,118 6,886 4,233

Staff costs (17.64 EUR/hour) [EUR] 63,991 266,686 121,464 74,672
Total vehicle-km 108,100 100,708 109,264 110,636
Vehicle operating costs (0.35 EUR/km) [EUR] 37,835 35,248 38,242 38,723
Total costs [EUR] 105,402 647,090 167,717 117,685
Profit [EUR] 19,486 —492,145 —24,927 13,453

2see p. 284, Tab. 8-32, “Vorhaltungskosten ohne Fahrpersonalkosten” (fix costs without personnel
costs) for a VW Golf 1.4 Trendline per year divided by 365, with “Allgemeine Kosten” (overhead costs) of
5.291 EUR/year for the vehicle fleet management)|

14



in experiment DRT-0, the operator’s profit is positive. A larger fleet size translates into
higher costs, but also increases the number of ride-hailing users that yield higher revenues.
In experiment DRT-fleet-A, the operator makes large losses due to the large number of ride-
hailing vehicles. In experiment DRT-fleet-B, the increase in fleet size translates into higher
costs, thus the profit is reduced compared to experiment DRT-0. In experiment DRT-fleet-
C, the profit slightly decreases compared to experiment DRT-0 and is still positive. There
are only a few more vehicles, thus, operating cost only slightly increase and the ride-hailing
service attracts more users which yields an increase in revenues.

A service with autonomous vehicles would eliminate staff costs for drivers. If staff costs
were excluded from Tab. 1, both experiments DRT-fleet-B and DRT-fleet-C would yield
an increase in profit compared to DRT-O0.

6 Conclusion and outlook

This study proposes a simulation-based heuristic for the optimization of ride-hailing ser-
vices which is applicable to large-scale and real-world case studies. A software tool is
provided as an extension of the existing agent-based simulation framework MATSim. The
proposed optimization approach uses an outer loop to adjust ride-hailing service param-
eters and an inner loop to simulate transport users’ reactions to the ride-hailing service.
For the rural region of the Vulkaneifel (Volcanic Eifel) in Germany, in different simulation
experiments, the fare, fleet size and service area are separately adjusted based on pre-
defined control variables (90th waiting time percentile or number of ride-hailing users).
The simulation experiments reveal that the ride-hailing service adjustment strategies have
a significant impact on the level of service. Waiting times are successfully reduced by
applying a fare surcharge during peak times, by increasing the ride-hailing vehicle fleet
and by reducing the service area. Time-dependent fare surcharges reduce the number of
ride-hailing users and improve the resulting ride-hailing service quality for the remaining
ride-hailing users. A larger fleet size translates into more and faster available ride-hailing
vehicles which at first reduces waiting times and attracts additional ride-hailing users,
mainly from the public transit and bike mode. Thus, waiting times increase until the
ride-hailing vehicle fleet size is again increased. At some point the gradient flattens and
the resulting number of ride-hailing users (and ride-hailing vehicles) stabilizes. For a 90th
waiting time percentile of 600 sec, a fleet size of 120 ride-hailing vehicles is required and
for 900 sec only half the fleet size is required. In addition to optimizing an existing service,
the proposed tool allows for a more accurate estimation of demand levels for future ride-
hailing services. The tool guarantees a certain ride-hailing quality of service throughout
the simulation process and regardless of the number of ride-hailing users.

In future studies, the proposed methodology will be applied to additional case studies,
including urban areas, e.g. Berlin, Gladbeck, with larger population sizes. In addition,
future studies will address the impact of vehicle rebalancing strategies on resulting ride-
hailing service parameters, in particular the required fleet size to obtain a desired service
level. Further research will also deal with the interaction between ride-hailing services
and regular taxi services, or two competing ride-hailing service providers. The latest
developments in the proposed ride-hailing optimization tool allow for a multi-mode ride-
hailing application.
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