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Abstract

Epidemiological simulations as a method are used to better understand and
predict the spreading of infectious diseases, for example of COVID-19. This paper
presents an approach that combines person-centric data-driven human mobility
modelling with a mechanistic infection model and a person-centric disease
progression model. Results show that in Berlin (Germany), behavioral changes of
the population mostly happened before the government-initiated so-called
contact ban came into effect. Also, the model is used to determine differentiated
changes to the reinfection rate for different interventions such as reductions in
activity participation, the wearing of masks, or contact tracing followed by
quarantine-at-home. One important result is that successful contact tracing
reduces the reinfection rate by about 30 to 40%, and that if contact tracing
becomes overwhelmed then infection rates immediately jump up accordingly,
making rather strong lockdown measures necessary to bring the reinfection rate
back to below one.
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1 Background
The general dynamics of virus spreading is captured by compartmental models, most

famously the so-called SIR model, with S = susceptible, I = infected/infectious, and

R = recovered [1, 2]. Every time a susceptible and an infectious person meet, there

is a probability that the susceptible person becomes infected. Some time after the

infection, the person typically recovers. Variants include, e.g., an exposed (but not

yet infectious) compartment between S and I.

Compartmental models assume transition rates from one compartment to the

other, most importantly the infection rate β for the transition from S to I. Smieszek

[3, 4] presents a more realistic mechanical infection model: Infected persons generate

a “viral load” that they exhale, cough or sneeze into the environment, and people

close by are exposed. Overall, the probability for person n to become infected by

this process in a time step t is described as

Pn,t = 1− exp

[
−Θ

∑
m

qm,t · cinm,t · inn,t · τnm,t

]
(1)
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Figure 1 Top: Events for travel by individual vehicle. Bottom: Events for travel by public
transport. Source: [11].

where m is a sum over all other persons, q is the shedding rate (∼ microbial load),

ci the contact intensity, in the intake (reduced, e.g., by a mask), and τ the duration

of interaction between the two individuals.

Such models need to be embedded into a contact graph [5, 6, 7, 8]. An infected

person from out-of-country may return to its family, there infect one of her/his

children, the child may take it to the school where it infects other children, etc.

These trajectories are typically not available for simulations, for example for pri-

vacy reasons. It is, however, possible to generate synthetic approximations to these

trajectories. This is routinely done in transport modelling. One approach is to use

information from mobile phone data (but not the full trajectories), and process

them together with information about the transport system and with statistical

information from other surveys [9, 10]. That approach leads to synthetic movement

trajectories for the complete population (cf. Fig. 1). From these trajectories, it is

possible to extract how much time people spend with other people at activities or

in (public transport) vehicles.

This paper presents simulation results for such a data set, for the metropolitan

area of Berlin in Germany, with approx. 5 million people. The simulation model

constructs an infection dynamics model on top of persons’ movement trajectories:
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Table 1 Age-dependent transition probabilities from symptomatic to seriously sick (= requiring
hospitalisation), and from seriously sick to critical (= requiring breathing support or intensive care).
Source: [16].

Age-group symptomatic cases hospitalised cases
requiring hospitalisation requiring critical care

0 to 9 0.1% 5.0%
10 to 19 0.3% 5.0%
20 to 29 1.2% 5.0%
30 to 39 3.2% 5.0%
40 to 49 4.9% 6.3%
50 to 59 10.2% 12.2%
60 to 69 16.6% 27.4%
70 to 79 24.3% 43.2%

80+ 27.3% 70.9%

1 One or more exposed persons are introduced into the population.

2 At some point, exposed persons become infectious. From then on, every time

they spend time together with some other person in a vehicle or at some

activity, Eq. (1) is used to calculate the probability that the other person, if

susceptible, can become infected (= exposed). If infection happens, the newly

infected person will follow the same dynamics.

3 Infectious persons eventually move on to other states, described later.

The model runs many days, until no more infections occur.

This continues work by Smieszek et al [3, 12] and by Hackl and Dubernet [13]. The

important difference, and major innovation, is that our model is entirely data-driven

on the mobility side, i.e. both the “normal” person trajectories and the reduction of

activity participation over the course of the epidemics stem from data. This allows

to considerably reduce the number of free parameters.

Other similar work, i.e. virus spreading based on a mobility model, is by Virginia

Biotechnology Institute [14, 15]. However, again, our model is much more data

driven. The work by Imperial College [15, 16] is similar to ours in that it models

individual persons. However, again, our model is stronger on the mobility side, and

thus able to obtain compliance rates from data rather than having to guess them.

2 Methods
2.1 Disease progression model

The disease progression model is taken from the literature [17, 18, 19, 20, 21, 22]

(also see [23]). The model has states exposed, infectious, showing symptoms, seri-

ously sick(= should be in hospital), critical (= needs intensive care), and recovered.

The durations from one state to the next follow log-normal distributions; see Fig. 2

for details. We use the same age-dependent transition probabilities as [16], shown

in Tab. 1.

Infecting another person is possible during infectious, and while showing symp-

toms, but no longer than 4 days after becoming infectious. This models that persons

are mostly infectious relatively early through the disease [18], while in later stages

the infection may move to the lung [19], which makes it worse for the infected

person, but seems to make it less infectious to other persons.

2.2 Contact model

Encounters in “containers” , i.e. in facilities and vehicles, are directly taken from

the data. Synthetic persons in the same container at the same time have a certain
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Figure 2 State transitions [17, 18, 19, 20, 21, 22].

probability to interact; if they interact, the probability of an infection is given by

Eq. (1) if one person is contagious (maximally until 4 days after becoming infectious;

see above) and the other is susceptible. In particular, the duration of the interaction

to feed into Eq. (1) is also provided by the data.

The algorithm looks at agents when they leave a facility. At this point, it

• randomly selects 3 other agents which are at the facility at the same time,

and

• with each selected agent computes a possible infection if either the leaving

agent is susceptible and the other agent is contagious, or the other way round.

The infection model is Eq. (1), the time τ is the time (duration) that both

agents were simultaneously at the same facility.

We bound the infection dynamics at 3 other agents, since we assume that persons

do not interact with everybody in the facility. If there are fewer than 3 other agents

at the facility, then interaction simply happens with everybody. Clearly, we do not

want the model to interact with everybody at the facility. Using “10” instead of

“3” in trial runs did not make a noticeable difference (except that the Θ parameter

needed recalibration).

The same algorithm is used for interaction in (public transport) vehicles. In terms

of implementation, the model uses a generalized dynamics for containers, and treats

both facilities and vehicles as such containers.
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Note that the number “3” is used when the agent leaves. There is, however, also

interaction when other agents leave. Thus, this rather models the interaction with

“available spaces” than with persons. E.g. assume the following time line (from left

to right) and consider in particular the agent X:

t0 --> t1 --> t2 --> t3 --> t4 --> t5 --> t6

A A A A A A

. X X X X .

B B C C D D

This can, for the ease of interpretation, be interpreted as three seats in a row in

a public transport vehicle. We have the following events with respect to person X:

• At time t1, X enters the vehicle, and takes a seat between A and B.

• At time t2, B leaves the vehicle. In consequence, a possible infection of X from

B is computed with Eq. (1), with t2 − t1 as the duration of the interaction.

Also, C enters the vehicle, and takes the seat of B.

• At time t4, C leaves the vehicle. A possible infection of X from C is computed,

with t4 − t2 as the interaction time. At the same time, D enters the vehicle,

and takes the seat of C.

• At time t5, X leaves the vehicle. A possible infection of X from A is computed,

with t5− t1 as interaction time, and from D, with t5− t4 as interaction time.

In the algorithm, however, we do not explicitly model seating positions, but just

assume that every synthetic person that leaves interacts with up to 3 randomly

selected other agents.

The variation over time of the density of persons inside the container is currently

not taken into account. This could, however, be done in a further modelling step,

given data of facility and vehicle sizes. What is, however, taken into account is

the thinning out of persons in the container when they are no longer there: The

algorithm still computes interaction with up to 3 randomly selected persons, but if

these persons are not there, then there is no infection dynamics in either direction.

2.3 Multi-day modelling

Optimally, one would have multi-day trajectories. In our case, the data that we have

ends at the end of the day. Our simulations thus run the same person trajectories

again and again. This presumably underestimates mixing. However, there is still

strong mixing because the synthetic persons interact with other persons at the

same facility every day. For example, a train may have 1000 passengers. Out of

these, any of our agents would only see a small number other agents. This leads to

different encounters in every synthetic day, even when repeating the same trajectory

over and over.

The same holds for facilities, where the data is actually constructed such that there

are up to 400-persons per facility. That is, any work, shopping, or leisure facility can

have up to 400 visitors at the same time, and every person that has that facility in its

trajectory can interact with all of these persons. This number of interacting agents

is, however, limited (see infections at facilities and in vehicles). This results in an

issue for home locations: Our data model does not differentiate between “persons

living in the same block” and “persons living in the same household”. For this

reason we split persons living in the same block into realistic household sizes with

a maximum number of six people per household [24].
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As stated before, activities are of a certain type. These types are used in this re-

search to determine the effects that certain strategies have on the epidemic spread-

ing. If an activity is removed from a schedule, agents will still be put in the respective

containers, but do not take part in the infections dynamics. Such agents essentially

represent “holes” , since they may still be picked as one of the three agents to

interact with, but there is no infection.

2.4 Base calibration

Most parameters of the model are taken from the literature, as explained above

and in the additional material. The remaining free parameters are, from Eq. (1),

Θ · q · ci · in . Since none of these numbers seem to be known for COVID-19, we

have proceeded as follows:

• We have set the base values of q = ci = in = 1 . We keep these parameters

separate, since they later allow the modelling of different contact intensities

and of masks.

• The remaining Θ parameter was then calibrated so that in the base case, the

number of cases doubles every three days. This is a plausible fit to the initial

days which were totally without distancing measures, which is what our base

case represents. Calibrating Θ in our model corresponds to calibrating β , the

infection rate, in an SIR model.

Another free parameter is when the first infection occurs. This corresponds to the

initial number of infected persons, Io , in the SIR models. This date was set such

that our number of persons showing symptoms, which corresponded to the sam-

pling strategy in Germany during the early phase, is 50% above the reported case

numbers. Evidently, this has to do with the fraction of non-reported cases, which is

considered in Section 2.7. We also feed the simulation one additional infected case

per day, since Berlin is embedded into a system where disease import is probable.

The result of this base calibration can be seen in Fig. 5 (blue).

2.5 Reductions in activity participation

During the unfolding of the epidemics, people decided to no longer participate in

certain activities. We model this by removing an activity from a person’s schedule,

plus the travel to and from the activity. In consequence, that person no longer

interacts with people at that activity location, and in consequence neither can infect

other persons nor can become infected during that activity. Overall, this reduces

contact options, and thus reduces epidemic spread.

A very important consequence of our modelling approach is that we can take

that reduction in activity participation from data. Unfortunately, the activity type

detection algorithm is not very good for these unusual activity patterns, as one

can see in Fig. 3 when knowing that all educational institutions were closed in

Berlin after Mar/15. What is reliable, though, is the differentiation between at-home

and out-of-home time, as displayed in Fig. 4. One clearly notices that out-of-home

activities are somewhat reduced after Mar/8, and dramatically reduced soon after.

After some experimentation, it was decided to take weekly averages of the activity

non-participation, and use that uniformly across all activity types in our model,

except for educational activities, which were taken as ordered by the government.
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Figure 3 Reduced activity participation over the course of the epidemics in Germany.

2.6 Calibration against case numbers in Berlin

The simulation is calibrated against the Berlin case numbers (Fig. 5, violet dots)

[25]. Each reported case comes with two dates: reporting date, and so-called refer-

ence date, which refers to the onset of symptoms. Other than Dehning et al. [26],

we use the reference date, which is closer to the real dynamics.

Since our simulation explicitly models the state of “showing symptoms”, we can

directly compare this to the case numbers (the sampling strategy in Germany at

that time was to not test persons without symptoms). Using the model as explained

so far leads to the orange curve in Fig. 5. This is clearly too high. Multiplying the

reductions in activity participation by a factor (green curve) does not help: This

now gets the downward slope right, but the curve implies that the fraction of non-

reported cases would be smaller before mid-march than afterwards. Since this is

implausible, we set α back to one and introduce a behavioral change point earlier

in the simulation, see the red curve. This is consistent with Dehning et al. [26], who

report a first change point around Mar/7 which “matches the timing of the first

governmental intervention which included cancellations of large events, as well as

increased awareness”.

We model this by introducing a change of contact intensity ci, early in March, for

all out-of-home activities, public transport, and quarantined-at-home. We calibrate

the day and magnitude of the ci change by minimizing the Root Mean Squared

Logarithmic Error (RMSLE) between detected cases and persons showing symptoms

in the simulation adjusted by an estimate of 50% unrecorded cases; the two free

parameters are the new value of ci , and the first day with new value (constrained to

be between Mar/3 and Mar/9). As the objective function is expensive to evaluate,

we chose the Tree-structured Parzen Estimator [27]. The red curve in Fig. 5 shows

the final result of the calibration process with the ci change point on Mar/7 and

ci = 0.32 . Other than Dehning et al. [26], we do not need a second and third change
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Figure 5 RKI case numbers [] together with simulated result for different values of α, and final
calibration result. The lines show the mean of 300 simulations; the error bands denote 5% and
95% quantiles. The calibration assumes that 1/3 of new infections remain undetected.

point; the activity non-participation from our data is sufficient. For a comparison

with hospital numbers see Sec. 2.7.

2.7 Comparison with hospital numbers in Berlin and resulting statement about

undetected cases

Fig. 6 compares our simulation, with α = 1 and the additional change point on

Mar/7, with reported hospital cases in Berlin [28]. As a part of the calibration
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Figure 6 Reported hospital cases [] together with simulated results. The lines show the mean of
300 simulations; the error bands denote 5% and 95% quantiles.

process, the hospitalization probabilities of Tab. 1 are multiplied by 1.6. One ob-

serves that our model is somewhat “early” when compared to the Berlin hospital

admissions. We considered, and rejected, the following possible adjustments:

• One could shift the starting date of the infection process to later. This would

improve the timing of the simulated hospitalizations, but the maximum would

be lower, which could then be compensated for by a larger multiplier for

the hospitalization probabilities. However, then the simulated cases showing

symptoms would be lower than the reported case numbers, which seems im-

plausible.

• One could change the progression model, and assume more time between

showing symptoms and hospital admission. This would mean a deviation from

the values reported in the literature, which we did not want to do.

Given current knowledge, this points to a rather little underreporting in Berlin

– since more underreporting would mean an earlier date for the initial infection,

which in turn would mean even earlier dates for the hospitalization numbers, con-

trary to what is observed. This is consistent with other studies [29]. Even with the

assumption of little underreporting, however, the disease progression model from

the literature is too “fast” when compared to the data in Berlin.

3 Results
3.1 Behavioral interpretation of government interventions vs mobility data

One striking consequence of Fig. 4 is that, after the initial government interven-

tion from Mar/7 that cancelled large events and raised awareness, the population

reaction in fact preceded the government interventions, rather than the other way

around. Out-of-home activity participation was already reduced between Mar/7 and

Mar/14, before the second government intervention that closed schools, clubs, and

bars. Similarly, there was a further considerable drop between Mar/14 and Mar/21,

again before the so-called contact ban (strongly reduced interaction between differ-

ent households) and closing of all restaurants and non-essential stores in Germany.
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At least for Berlin and probably for Germany, it is thus not true that the govern-

ment forced society and the economy to come to a halt; rather, society did this by

themselves, and the government presumably stabilized or reinforced behavior that

was happening anyways.

3.2 Reductions of the reinfection rate R

In the following, we investigate the contributions of certain non-pharmaceutical

interventions towards reducing the reinfection rate R . This is obtained by running

two different simulations, one without the measure and one with the measure, taking

note of the corresponding reinfection numbers, dividing them by each other, and

averaging. The following interventions are considered:

• Certain types of activities are removed from the infection dynamics

by removing these activity types from each synthetic person’s trajectory, as

described above. Note that a 100% reduction of activity participation seems

quite unrealistic except for schools; our mobility data (Fig. 4) implies that

despite the perceived strength of the measures in Berlin, the drop was never

more than 50%.

• If activities are removed only with a certain probability, a random

draw is made every time a synthetic person has that activity type in its plan.

This means that the model assumes that, say for a 50% work reduction, it

will be another 50% subset of persons at work every day. This intervention,

in consequence, does not sever infection networks, but just slows down the

dynamics.

• Masks are added into the infection model of Eq.1 by reducing the shedding

and/or the intake accordingly: cloth masks reduce shedding and intake to 0.6

and 0.5 of their original values, surgical masks to 0.3 and 0.3, and N95 (FFP)

masks to 0.15 and 0.025 [30, 31]. Evidently, it is now possible in our model to

assign masks to activity types, to persons, or both.

• Contact tracing is implemented in the following way: If a synthetic person

shows symptoms, then after a configurable delay d and with a configurable

probability γ, contact persons of the last 14-days are put into quarantine at

home. The parameter d parametrizes the delays caused by testing and by

tracking down contact persons, the parameter γ the probability that a person

cannot be contacted or that it does not follow the request to stay at home.

Persons in the same household as the symptomatic person are always put into

quarantine; contacts during shopping, while using public transport, or with

contacts shorter than 15-minutes are ignored.

We determine consequences of interventions by administering them to the unre-

stricted dynamics (i.e. the blue curve of Fig. 5), on Mar/7. We first collect for each

infected person the number of reinfections. These numbers are then averaged over all

persons becoming contagious on a certain day; this corresponds to the “case or co-

hort reproductive number” method of [32]. These numbers are averaged 100 Monte

Carlo runs with different random seeds. The resulting R values can be plotted over

time, see Fig. 7. Evidently, the interventions are visible in these numbers before the

interventions are implemented, because the reinfections are registered backwards

in time to when the person became contagious. However, only from the day of the
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intervention onward will they show the full effect. To further reduce Monte Carlo

noise, we average ρ = 1−Rintervention/Rbase over the first 14 days after the intro-

duction of the intervention. For these values, we then compute (Tab. 2):

• mean ρ = 1
n

∑
n ρn , where n is the number of different simulation runs (Monte

Carlo seeds)

• stddev σ =
√

1
n

∑
n (ρn − ρ)

2

• stderr σ/
√
n− 1

Evidently, the standard deviation gives information about the variability of the

Monte Carlo runs, while the standard error gives information about the probability

that the true mean is different from zero. All of our values are significantly different

from zero at the 3σ level.

Assuming that the initial changes from Mar/7 are changes that will remain stable

over the epidemics and the remaining R is around 2, then a combination of relatively

many measures is needed to bring R to below one. Note that this needs to be done

multiplicatively, i.e. Rfinal = Rbase · (1− ρ(a)) · (1− ρ(b)) · . . ., where (a), (b), . . . are

the different measures. One also notices the rather large contribution of contact

tracing. This assumes that the contact tracing system is not overwhelmed. If it

becomes overwhelmed, then a situation where R was maybe slightly above one will

suddenly jump to one where R is about 30% to 40% larger. The result will be a

strong acceleration of the exponential growth dynamics, and fairly strong measures

will have to be taken to get R back to below one. We think that successful contact

tracing is a plausible explanation why the situation is currently (middle of July)

under control in Germany despite the relatively open regime compared to other

countries.
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Table 2 Additional reduction of R by various non-pharmaceutical interventions.

Measure Additional Standard Standard
reduction deviation error
of R by:

Complete closing of daycare, schools, universities 6% 3% 0.26%
Reduction of daycare, school, university attendance by
50%

5% 2% 0.25%

Reduction of out-of-home leisure activities by 50% 15% 2% 0.25%
Reduction of out-of-home shopping activities by 50% 3% 3% 0.26%
Reduction of out-of-home work activities by 50% 19% 3% 0.31%
Reduction of all out-of-home activities by 50% 62% 2% 0.18%
Cloth masks are worn by 50% of persons and surgical
masks were worn by an additional 10% while shopping
and in public transport

4% 2% 0.25%

N95 masks are worn by 90% of persons while shopping
and in public transport

7% 3% 0.28%

N95 masks are worn by 90% of persons at all out-of-home
work activities

20% 3% 0.26%

Contact tracing (with d=2 and γ = 0.5) followed by
quarantine-at-home

33% 3% 0.28%

Contact tracing (with d=2 and γ = 0.75) followed by
quarantine-at-home

40% 3% 0.33%

4 Discussion
Our “additional reductions to R” come out much lower than those of Brauner et

al. [33]. We attribute this to the following elements:

• The model by Brauner et al. has no additional change point on Mar/7. In

consequence, their approach has to assign all changes in the infection dynamics

to the school closures. The school closures in Berlin were, however, one week

later, with Mar/12 (fri) or Mar/15 (mon) as the last day of school; too late

to explain the first change in the infection numbers. Also, Dehning et al. [26]

have an additional change point on Mar/7, corroborating its existence.

• Other than both Brauner et al. and Dehning et al., we have the mobility data

of Fig. 4 at our disposal. It is clear that there was considerably more societal

adaptation around the weekend of Mar/13-14 than just keeping children at

home. Brauner et al themselves write “the closure of schools ... may have

caused ... behaviour changes. We do not distinguish this indirect signalling

effect from the direct effect”. Additionally, in Germany, children staying at

home will force their parents to stay at home, thus forcing them into home

office. In consequence, some of this may not be signalling, but causal secondary

effects.

In consequence, our model is more differentiated: What Brauner et al. attribute to

the school closures alone is in our model attributed to a combination of school clo-

sures, behavioral changes, and the reduction of various other out-of-home activities.

5 Conclusions
We combine a person-centric human mobility model with a mechanical model of

infection and a person-centric disease progression model into an epidemiological

simulation model. Different from other models, we take the movements of the per-

sons, including the intervening activities where they can interact with other people,

directly from data. For privacy reasons, we rely on a process that takes the original

mobile phone data, extracts statistical properties, and then synthesizes movement

trajectories from the statistical properties. One could use the original mobile phone

trajectories directly if they were available.
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The result is a feature-rich person-centric simulation model that is still fairly

parsimonious in its parameters:

• Similar to compartmental models, one needs to calibrate the base reinfection

rate.

• Other than for compartmental models, both the spatial and the social inter-

actions between persons come directly from the mobility data.

• Reductions in infections coming from activity reduction come directly from

the mobility data.

• Also, disease progression is individual, taking into account demographic and

other person-centric attributes as they are available.

• Mechanical aspects such as the wearing of masks by certain persons and/or

at certain activity types can be integrated very simply into the model, by

reducing virus shedding, virus intake, or both. Travel in public transport is

already integrated.

• Organizational suppression approaches, such as contact tracing, can be sim-

ulated mechanically, thus extracting information about the allowed delays

between symptom onset and reaching contacts, the failure rate, etc.

The model is used to replay the epidemics in Berlin. This allows important in-

sights into the societal transmission from government actions to mobility behavior

to infection dynamics. Importantly, it turns out that the population started reduc-

ing its out-of-home activities before the government asked/ordered the population

to do so. The model is then used to evaluate different intervention strategies, such as

closing educational facilities, reducing other out-of-home activities, wearing masks,

or contact tracing, and to determine differentiated percentage changes of the rein-

fection number R per intervention. An important insight is that successful contact

tracing followed by quarantine-at-home results in a rather large reduction of the re-

infection rate R. In consequence, if contact tracing becomes overrun, rather drastic

lockdown measures are necessary to bring R back to below one.
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Availability of data and materials

For computer code see https://github.com/matsim-org/matsim-episim. Figs. 5 and 6 were computed with

version ab6515b557c293af24eda254a79b5d4d7ccb4bd9 of the code, started with command

java -jar matsim-episim-1.0-SNAPSHOT.jar runParallel \

--setup org.matsim.run.batch.StabilityRuns \

--params org.matsim.run.batch.StabilityRuns$Params

The output data used for the figures can be retrieved at https://svn.vsp.tu-berlin.de/repos/public-svn/

matsim/scenarios/countries/de/episim/output-data/stability1.zip and https://svn.vsp.tu-berlin.de/

repos/public-svn/matsim/scenarios/countries/de/episim/output-data/stability2.zip.

Fig. 7 and Tab. 2 were computed with version dad3a44989c2ab2131c17fc1a6b533906012d47f of the code, started

with command (number of seeds were set to 100 in Params class)

java -jar matsim-episim-1.0-SNAPSHOT.jar runParallel \

--setup org.matsim.run.batch.Interventions \

--params org.matsim.run.batch.Interventions$Params

Post processing was done with

java -jar matsim-episim-1.0-SNAPSHOT.jar org.matsim.analysis.SMRValuesFromEvents

The output data used for Fig. 7 and Tab. 2 can be retrieved at https://svn.vsp.tu-berlin.de/repos/

public-svn/matsim/scenarios/countries/de/episim/output-data/interventions0703/.

The input data to the simulations (synthetic mobility traces) are available from Senozon but restrictions apply to

the availability of these data, which were used under license for the current study, and so are unfortunately not

https://github.com/matsim-org/matsim-episim
https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/countries/de/episim/output-data/stability1.zip
https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/countries/de/episim/output-data/stability1.zip
https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/countries/de/episim/output-data/stability2.zip
https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/countries/de/episim/output-data/stability2.zip
https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/countries/de/episim/output-data/interventions0703/
https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/countries/de/episim/output-data/interventions0703/
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publicly available. Data are however available from the authors upon reasonable request and with permission of

Senozon. Also, the code in the repository is runnable with a synthetic version of such data.

The only input that is absolutely necessary to run the code are the initial activity-based person trajectories, which

can, e.g., be obtained from mobile phone data, or from so-called activity-based models in transport.

More results and visualizations are available under https://covid-sim.info.
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