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Using Reinforcement Learning to Control Traffic
Signals in a Real-World Scenario: An Approach

Based on Linear Function Approximation
Lucas N. Alegre, Theresa Ziemke, and Ana L. C. Bazzan

Abstract— Reinforcement learning is an efficient, widely used
machine learning technique that performs well in problems with a
reasonable number of states and actions. This is rarely the case
regarding control-related problems, as for instance controlling
traffic signals, where the state space can be very large. One way
to deal with the curse of dimensionality is to use generalization
techniques such as function approximation. In this paper, a linear
function approximation is used by traffic signal agents in a
network of signalized intersections. Specifically, a true online
SARSA(λ) algorithm with Fourier basis functions (TOS(λ)-FB) is
employed. This method has the advantage of having convergence
guarantees and error bounds, a drawback of non-linear function
approximation. In order to evaluate TOS(λ)-FB, we perform
experiments in variations of an isolated intersection scenario and
a scenario of the city of Cottbus, Germany, with 22 signalized
intersections, implemented in MATSim. We compare our results
not only to fixed-time controllers, but also to a state-of-the-
art rule-based adaptive method, showing that TOS(λ)-FB shows
a performance that is highly superior to the fixed-time, while
also being at least as efficient as the rule-based approach. For
more than half of the intersections, our approach leads to less
congestion and delay, without the need for the knowledge that
underlies the rule-based approach.

Index Terms— Traffic signal control, reinforcement learning,
function approximation, multiagent systems.

I. INTRODUCTION

TRAFFIC signal control is a challenging real-world prob-
lem. Current solutions to this problem, such as adaptive

systems are often centralized or at least partially centralized.
This is the case when there are several area controllers that are
in charge of portions of the urban network. Less sophisticated
alternatives are manual interventions from traffic operators or
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the use of fixed-time signal plans. However, in the era of big
data and increasing computing power, other paradigms are
becoming more and more prominent, as for instance, those
derived from machine learning in general, and reinforcement
learning (RL) in particular. In RL, traffic signal controllers
located at intersections can be seen as autonomous agents that
learn while interacting with the environment.

The use of RL is associated with challenging issues. One
of them regards the environment being dynamic, thus making
it necessary for agents to be highly adaptive. Moreover,
agents must react to changes in the environment at individual
level while also causing an unpredictable collective pattern,
as they act in a coupled environment. Furthermore, the data
needed in order to learn good policies may be staggeringly
high-dimensional. Therefore, traffic signal control poses many
challenges for standard techniques of multiagent RL.

To understand these challenges, let us first discuss the single
agent case, where one agent performs an action once in a
given state, and learns by getting a signal (reward) from
the environment. RL techniques are based on estimates of
values for state-action pairs (the so-called Q-values). These
values may be represented as a table with one entry for each
state-action pair. This works well in single agent problems
and/or when the number of states and actions is small.
However, in [1] Sutton and Barto discuss two drawbacks of
this approach: first, the memory necessary to store these tables
grows exponentially with the dimension of the state space,
making it an impractical solution to real-world applications.
Second, a long exploration time is required to fill such tables
accurately. Those authors then suggest that generalization
techniques may help in addressing this so-called curse of
dimensionality.

An efficient representation of the states is a key fac-
tor that may limit the use of the standard RL algorithms
in problems that involve several agents. Moreover, in sce-
narios in which the states are represented as continuous
values, estimation of the state value by means of tabu-
lar Q-values may not be feasible. To deal with this prob-
lem, in this paper a true online SARSA(λ) algorithm [2]
with Fourier Basis linear function approximation [3] is
used. Henceforth, we refer to our approach by TOS(λ)-FB.
As discussed ahead, this option is based on the fact that
non-linear function approximation has several drawbacks,
one being the lack of convergence guarantees and error
bounds.
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TOS(λ)-FB was implemented in the open-source agent-
based transport simulation MATSim [4], which was then
used to compare our approach to others, namely a fixed-time
scheme and a rule-based adaptive signal control algorithm
based on Lämmer and Helbing [5]. The results show that
TOS(λ)-FB is able to show competitive performance in both an
isolated intersection scenario, as well as in a network of inter-
sections. This is especially notable, as the adaptive approach
(and also the fixed time one) were designed specifically for
dealing with the control of signals, whereas the RL-based
approach needs no domain knowledge. To the authors’ best
knowledge, only a few works in the literature (especially those
stemming from the RL area) include comparison to a state-of-
the-art adaptive approach. More often than not, comparison of
RL approaches is made only to a fixed-time scheme.

The remainder of this paper is organized as follows.
The next section discusses background and related work.
Section III describes TOS(λ)-FB. For evaluation of the pro-
posed approach, experiments and their results are presented
and discussed in Section IV, whereas Section V discusses the
obtained results and future work.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce some concepts on traffic
signal control (Section II-A) and give more details about
one method in particular, which is used as comparison
(Section II-B); then we discuss related work that is based
on RL; the last subsection presents the simulation environment
MATSim.

A. Traffic Signal Control

Traffic signals controllers can operate in several ways,
defined over various dimensions. The first of these dimensions
regards whether the signal is pretimed or based on a traffic-
responsive strategy. Hence, to follow most of the RL literature,
we interchangeably use the terms pretimed and fixed-time,
as well actuated and adaptive, even if not fully correct.

In contrast to pretimed signals that cyclically repeat a
given signal plan, traffic-responsive signals react to cur-
rent traffic by adjusting signal states based on sensor data
(e.g., from upstream inducting loops). They can, therefore,
react to changes in demand and reduce emissions and waiting
times more efficiently. One distinguishes different levels of
adjustment: actuated signals (these use a fixed-time base plan
and adjust parameters like green split, cycle time or offset);
semi-actuated; and fully adaptive.

A variety of traffic-responsive traffic signal control algo-
rithms have been developed. An overview is given, e.g.,
by Friedrich [6]. Here we briefly list some along with their
references and note that these cover various generations and
technological basis: PASSER [7]; Prodyn [8]; OPAC [9];
SOTL [10]; TUC (Traffic-responsive Urban Traffic Con-
trol) [11]; and TUC combined with predictive control [12].
Two popular approaches in this class are SCATS [13] and
SCOOT [14]. Adaptive signal control is also very popular
within research on RL; these are covered in Section II-D.

Next, we detail one state-of-the-art fully-adaptive approach
that is categorized as rule-based, namely the one devised by
Lämmer and Helbing [5]. The approach was shown to signif-
icantly improve waiting times while also granting stability in
contrast to many other adaptive approaches [15], [16]. Hence,
it is a suitable approach to compare TOS(λ)-FB with.

B. Lämmer and Helbing’s Rule-Based Adaptive Traffic
Signal Control Algorithm

The idea of the self-controlled signals proposed by
Lämmer and Helbing [5] is to minimize waiting times and
queue lengths at intersections, while also granting stability
through minimal service intervals. The algorithm combines
two strategies. The first is the optimizing strategy, which
selects the signal phase i to be served next as the one with
the highest priority index. This takes into account outflow rates
and queue lengths of waiting and approaching vehicles that are
registered by sensors. Given a prediction of the expected queue
length n̂i (t, τ ) at time τ > t and the maximum outflow rate
qmax

i for phase i , one can derive the expected required green
time for clearing the queue at time t . The second strategy is
the stabilizing strategy, which ensures that each link is served
at least once during a specified minimal service interval to
prevent spillbacks. Links that have to be stabilized are added
to a stabilization queue. If the queue is non-empty, the phase
corresponding to the first element of the queue is switched
to green for a guaranteed green time gs

i depending on the
average capacity utilization. If the stabilization queue is empty,
the optimizing strategy takes over.

An assumption of Lämmer’s algorithm is a queue-
representation of traffic flow: if a link i is served, vehicles
can leave the link with a constant outflow rate qmax

i , which
is assumed to be known. Additionally, queues are assumed
to be non-spatially, i.e., the algorithm does not account for
vehicles spilling back to upstream lanes or links. Demand is
supposed to be manageable on average with the desired cycle
time T to ensure stability. The reader is referred to [5], [15]
for more details, as well as to [17], [18] for a more recent
extension/implementation (in MATSim).

C. Reinforcement Learning

In RL, an agent’s goal is to learn an optimal control policy
π∗, which maps a given state to the best appropriate action
by means of a value function. We can model a RL problem
as a Markov decision process (MDP) composed of a tuple
(S,A,T ,R, γ ), where S is a set of states; A is a set of
actions; T is the transition function that models the probability
of the system moving from a state s ∈ S to a state s′ ∈ S, upon
performing action a ∈ A; R is the reward function that yields a
real number associated with performing an action a ∈ A when
one is in state s ∈ S; and γ ∈ [0, 1) is the discount factor
for future rewards. An experience tuple 〈s, a, s′, r〉 denotes
the fact that the agent was in state s, performed action a
and ended up in s′ with reward r . Let t denote the t th step
in the policy π . In an infinite horizon MDP, the cumula-
tive reward in the future under policy π is defined by the
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action-value function:

Qπ (s, a) = E

[ ∞∑
τ=0

γ τrt+τ |st = s, at = a, π
]
. (1)

Since the agent’s objective is to maximize the cumulative
reward, if it learned the optimal Q-values Q∗(s, a) for all
state-actions pairs, then the optimal control policy π∗ is as
follows1:

π∗(s) = argmax
a∈A

Q∗(s, a), ∀s ∈ S. (2)

RL methods can be divided into two categories: model-
based methods assume that functions T and R are available.
Model-free methods, on the other hand, do not require agents
to have access to information about the environment.

D. Adaptive Traffic Signal Control Based on RL

There are many studies that use RL to improve traffic signal
performance. Due to space restrictions, we refer the reader to
some survey papers ( [20]–[23]), which cover different aspects
of the whole agenda. We note that [22] combines the survey
with a good introduction for those unfamiliar with traffic signal
control concepts.

Using model-free RL for traffic signal control is especially
promising, as one does not need a lot of domain knowledge
(as opposed to, e.g., rule-based approaches). Rather, the signal
controller learns a policy by itself, i.e., RL is used in order to
learn a policy that maps states (normally queues at junctions)
to actions (normally keeping/changing the current split of
green times among the lights of each phase).

However, issues may arise with the aforementioned curse
of dimensionality. In fact, depending on the specific for-
mulation (e.g., how states and action spaces are defined),
the search space can be very high. For instance, consider an
intersection with four incoming approaches with three lanes
per approach. If we define the state as the queue length for
each lane discretized in 10 levels, we end up with 10(4×3)

distinct possible states. The reader is referred to [23] for
several variants of such formulations.

Here we focus on the several dimensions that can be used
to classify the research, stressing that there are hundreds of
works that deal with signal control using RL.

One of such dimensions is decentralization vs. centraliza-
tion. While the former is more popular, there are centralized
approaches as well (e.g., [24]), where a single entity holds
the MDP for all traffic signals: a central authority receives
information about the queue lengths and elapsed time in all
intersections and makes a decision about timings at each
signal. On the other hand, the approaches in [21], [25] and
many others are decentralized. Each junction learns indepen-
dently (normally using QL).

A second dimension that is worth mentioning is whether
tabular methods are used or, rather, function approximation.
Since most of these works use QL, and thus approximate
the Q-function as a table, they may fall prey to the curse
of dimensionality. This is especially the case when one deals

1For converge guarantees, in the case of QL, please see [19].

with realistic scenarios, as, e.g., those beyond 2-phase inter-
sections. In order to address this, a few works used function
approximation. For instance, [26] uses tile coding. However,
the definition of states only considers queue length.

Recently, many studies have achieved impressive results
using deep neural networks to approximate the Q-function
(e.g., DQN [27], [28]). However, RL with linear func-
tion approximation has guaranteed convergence and error
bounds [29], whereas non-linear function approximation is
known to diverge in multiple cases [1], [30]. Beyond these
theoretical results, linear learning methods are also of interest
because they are very efficient in terms of both data and
computation. Moreover, linear function approximation relies
on a significantly fewer number of parameters, facilitating
interpretation. Thus, if the Q-function can be linearly approxi-
mated with sufficient precision, linear function approximation
methods are preferable.

A third classification dimension is whether the RL-based
scheme is employed in an isolated intersection or in a network.
Other dimensions are associated with the way each approach
formulates states, actions, and compute rewards. More on this
can be found in the surveys.

Finally, an important dimension is how evaluation is
performed. The bulk of the literature performs just basic
evaluation, either by comparing their proposed approaches to
a fixed-time approach (and in the majority there is no informa-
tion about how such timing was computed as, e.g., whether or
not Webster’s method [31] was employed, which should be the
case to guarantee a minimum of fairness in the comparison);
or by comparing to a random controller; or by comparing to
tabular QL. Very few works present a comparison against a
fully adaptive approach as we do here (by comparing against
the scheme detailed in Section II-B). Moreover, most of these
works do not give details about the adaptive approach used
for comparison. In [32] the actual actuated controller used
was not mentioned. Authors in [33] just mentioned that they
have compared to GLIDE, a “modified version of SCATS
used in Singapore”. In [34], it is mentioned that “a mix of
fixed-time control, semiactuated control, and SCOOT control”
was used. Authors in [35] used SAT, an “algorithm that
roughly emulates SCATS’ behavior of saturation balancing”,
while [36] compared to SOTL [10]. In summary, a very small
fraction of the works mentioned in the surveys did indeed
compare to fully adaptive schemes.

E. Transport Simulation

The agent-based transport simulation MATSim [4], which is
used in this study, is able to run large-scale real-world simula-
tions in reasonable time as, e.g., the open Berlin scenario [37].
Because of its agent-based structure, agent-specific waiting
times and varying queue lengths over time at traffic lights
can be directly analyzed and compared.

In MATSim, traffic flow is modeled mesoscopically by
spatial first-in-first-out (FIFO) queues. Vehicles at the head
of a queue can leave a link when the following criteria
are fulfilled: (1) The link’s free-flow travel time has passed,
(2) the flow capacity of the link is not exceeded in the given
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Fig. 1. Links with multiple lanes in MATSim. Each lane is represented
by its own FIFO queue. Traffic signal control for different turning moves is
captured. Vehicles on different lanes can pass each other, unless the queue
spills over. Source: [40].

time step, and (3) there is enough space on the next link.
Despite this simple modeling approach, congestion as well as
spillback can be modeled.

The traffic signal control module was developed by Grether
as an extension to MATSim [38]. If a signal exists on a
link, leaving the link is not possible while it shows red. First
studies focused on fixed-time signals, but also approaches
for traffic-responsive signal control have been implemented
[17], [18], [39]. Separated waiting queues at intersections
can be modeled in MATSim by lanes (see Fig. 1), which is
especially useful to model protected left turns. Signals and
lanes in MATSim are more extensively described by Grether
and Thunig [40].

Events of vehicles entering or leaving links and lanes are
thrown on a second-by-second time resolution in the simula-
tion. Sensors on links or lanes that detect single vehicles can
be easily modeled by listening to these events. As in reality,
the maximum forecast period of such sensors is limited –
vehicles can only be detected when they have entered the
link. In the simulation, responsive signals use these sensor
data to react dynamically to approaching vehicles. For every
signalized intersection, the control unit is called every second
to decide about current signal states. With that, any control
scheme (in our case, RL-based) can be easily plugged in.

MATSim has many other functionalities. Readers interested
in them – i.e., how agents adapt their plans and how long-
term effects can be analyzed – are referred to [4]. Further,
an example on how to start a MATSimsimulation using the
RL signal control, which is detailled next, can be found at
http://matsim.org/javadoc→ signals→ RunSarsaLambdaSig-
nalsExample.

III. METHODS

In this section, we first discuss the method used for function
approximation, then give details about the formulation of state
and action space, as well as rewards, for the specific domain
of signal control. To close the section, we discuss the pseudo-
code in more detail.

A. Function Approximation With the True Online SARSA(λ)
and Fourier Basis Functions

As aforementioned, our approach (TOS(λ)-FB) implements
the true online SARSA(λ) algorithm [41], a modification of

the traditional SARSA(λ) that was demonstrated to have better
theoretical properties and outperform the original method [42].
As detailed later, the state space can be very large for
intersections with multiple approaches and lanes. In order to
deal with high dimensional state spaces, the Q-function was
linearly approximated using the Fourier basis scheme [3].

When linear approximation is used, the Q-function Q(s, a)
for a given state vector s and discrete action a is approximated
as a weighted sum of a set of m basis functions φ1, . . . , φm ,
as in Eq. 3, where θ is the vector of learned weights.

Q(s, a) = θ · φ(s, a) =
m∑

i=1

θiφi (s, a) (3)

The Fourier series is one of the most commonly used
continuous function approximation methods, presenting solid
theoretical foundations. In [3], it was empirically shown that
Fourier basis outperforms other commonly used approxima-
tions methods such as polynomial and radial basis functions
in continuous RL domains.

When applying Fourier series to the RL setting, it is possible
to drop the sin terms of the series.2 Then, for a nth order
Fourier approximation, each basis function φi is defined as in
Eq. 4, where ci = [ci

1, . . . , ci
k] is a vector that attaches an

integer coefficient ci
1≤ j≤k ∈ {0, . . . , n} to each feature in s,

and k is the state space dimension.

φi (s, a) =
{

cos(πci · s), if a = at

0, if a �= at
(4)

The set of basis functions φ1, . . . , φm is obtained by sys-
tematically generating different coefficient vectors ci . Each
coefficient ci

j ∈ {0, . . . , n} determines (through the inner
product in Eq. 4) the i th basis function’s frequency along
the j th state dimension. Hence, as we increase the order n
of the approximation, basis functions with higher frequency
coefficients are also considered. Importantly, when more than
one coefficient is non-zero in a basis function, interactions
between different state features are captured. For example,
the effect of the queue lengths in the Q-value estimate
probably depends on which is the currently active signal phase.

From now on, we denote φ and Q as shorthand for the
vector containing the values of all basis functions φi (st , at )
and the action-value estimate Q(st, at ), respectively. The ele-
ments in φ that correspond to the current action at take on
the values of the Fourier basis; the elements corresponding to
other actions have zero value (as in Eq. 4).

After the execution of action at , the weights θ are updated
via gradient descent, following the true online SARSA(λ) with
linear function approximation update rule, as in Eq. 5, where
δ = rt +γ Q(st+1, at+1)−Q(st , at ) is the temporal difference
error and Qold is a scalar temporary variable initialized with
zero and set to Qold ← Q(st+1, at+1) after every step.

θ ← θ + α(δ + Q − Qold )e− α(Q − Qold )φ (5)

The eligibility traces vector e – which is used to address
the credit assignment problem – is updated as in Eq. 6. Each
weight update also takes into account previously visited states,

2For detailed explanation, please see [3].

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on February 21,2022 at 11:12:40 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ALEGRE et al.: USING RL TO CONTROL TRAFFIC SIGNALS IN REAL-WORLD SCENARIO 5

which are credited accordingly to the values accumulated
on the vector e. The parameter λ controls the decay of the
eligibility traces at each time step.

e← γ λe + φ − αγλ(e · φ)φ (6)

Given the base learning rate α, each weight θi is updated
with the scaled learning rate αi = α/||ci ||2, as proposed in [3].
Both the weights and eligibility traces vectors are initialized
with zeros.

In order to address the exploration-exploitation dilemma,
the ε-greedy exploration strategy is used to choose actions: the
action with the highest Q-value is selected with a probability
of 1− ε and a random action is selected with probability ε.

Next we give the formulations that are specific to the domain
of traffic signal control.

B. State Space

In RL problems, the definition of state space strongly
influences the agents’ behavior and performance. In traffic
signal control, for instance, information related to the level of
congestion in the approaching lanes is fundamental in order
to appropriately choose the next active signal phase.

In the present setting, the agent observes a state vector
st ∈ R

k at each time step t . This vector partially represents
the true state of the controlled intersection and is defined as in
Eq. 8. In this definition, ρa ∈ {0, 1} is a binary feature active
when a ∈ A is the current selected signal phase, and τ ∈ [0, 1]
is the elapsed time of the current signal phase divided by the
maximum green time gmax . Let E be the set of all links of
the intersection; L the set of all approaching lanes; Ce and
Cl the storage capacity of the links and lanes, respectively;
Ve,t the set of vehicles on link e ∈ E at the time t ; and V q

l,t
the set of queued vehicles on lane l ∈ L at the time t . Then,
ωe ∈ [0, 1] and ql ∈ [0, 1] (as defined in Eq. 7) are the density
of the link e ∈ E and the queue occupation of the lane l ∈ L,
respectively.

ωe = |Ve,t |
Ce

, ql =
|V q

l,t |
Cl

, ∀e ∈ E, ∀l ∈ L (7)

st = [ρ1, . . . , ρ|A|, τ, ω1, . . . , ω|E |, q1, . . . , q|L|] (8)

This state definition is inspired by [43], where authors
achieved similar performance levels, even when using more
complex state definitions (e.g., including positions of each
vehicle in the approaching lanes).

Normally, the RL signal control is only allowed to change
the active signal phase after a number of seconds  is elapsed.
Here we use, as common in the literature,  = 3 seconds. This
means that, in general, one time step for the traffic signal agent
corresponds to three seconds of simulation. This reduces the
complexity and the size of the state space, without significantly
reducing the performance.

C. Action Space

At each time step t , the traffic signal controller chooses a
discrete action at ∈ A. In our setting, the set of actions A is
the set of signal phases the traffic signal controller can choose

Algorithm 1 True Online SARSA(λ) With Fourier Basis

Input: α, λ, γ , ε, {ci }1≤i≤m , , gmin , gmax , yellow, all-red
1: θ ← 0; e← 0; Qold ← 0
2: Observe state s0 (Eq. 8)
3: Choose action a0 based on s0 with ε-greedy scheme
4: Compute features φi with s0, a0 and ci , ∀i ∈ m (Eq. 4)
5: for t in 0 . . .∞ do
6: Observe state st+1
7: Compute reward rt (Eq. 9)
8: if elapsed-time ≥ gmax then
9: Choose action at+1 ∈ A \ at with highest Q-value

10: else
11: Choose action at+1 with ε-greedy scheme
12: end if
13: Compute features φ′i with st+1, at+1 and ci , ∀i ∈ m
14: Q← θ · φ (Eq. 3)
15: Q′ ← θ · φ′
16: δ← rt + γ Q′ − Q
17: e← γ λe + φ − αγλ(e · φ)φ (Eq. 6)
18: θ ← θ + α(δ + Q − Qold)e − α(Q − Qold)φ (Eq. 5)
19: φ← φ′; Qold ← Q′
20: if at = at+1 (Keep current signal phase) then
21: Wait  seconds
22: else
23: Wait yellow+ all-red+gmin seconds
24: end if
25: end for

to activate. There are restrictions in the action selection:
the agent can keep the active signal phase only if the
elapsed time is less than the maximum green time gmax .
Additionally, when the agent changes the active signal phase,
it must wait yellow+ all-red+gmin seconds before acting
again. These restrictions ensure the feasibility of the signal
controller for real-world applications. The minimum-green
time (gmin) restriction, in particular, ensures that pedestrians
moving during a particular phase can safely pass through the
intersection.

D. Reward

After taking action at , the traffic signal controller receives
a scalar reward rt ∈ R. As in [43] the reward is defined as the
change in cumulative delay, as given in Eq. 9, where Dat and
Dat+1 represent the cumulative delay at the intersection before
and after executing the action at .

rt = Dat − Dat+1 (9)

On its turn, the cumulative vehicle delay D, for any time t ,
is computed as in Eq. 10, where dv

t is the delay of vehicle v
at time t and Vl,t is the set of vehicles on lane l ∈ L at time t .

Dt =
∑
l∈L

∑
v∈Vl,t

dv
t (10)

E. TOS(λ)-FB Traffic Signal Controller

To give an overview of TOS(λ)-FB, we now summarize
it in Alg. 1. Because each agent follows this procedure in
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a decentralized manner, each traffic intersection can have its
own estimates for the Q-values and follow its own policy.

The algorithm receive as input the parameters related to
RL (α, λ, γ and ε); the coefficient vectors {ci }1≤i≤m , which
control the linear approximation with Fourier basis (Eq. 4);
the time between actions ; the values for minimum and
maximum green time (gmin and gmax); and the duration for
yellow and all-red periods.

In lines 8-11 we ensure that the constraint on the maximum
green time gmax is satisfied: if the elapsed time for the current
signal phase is greater than gmax , the agent must choose an
action at+1 different of at . Otherwise, the ε-greedy scheme
(see Section III-A) is followed.

Lines 14-18 refer to how the weights θ , as well the eligi-
bility traces vector e of the linear approximation are updated
(Eq. 5 and Eq. 6, respectively), taking into account the current
Q-values estimates (Eq. 3).

Finally, in lines 20-23 we address the constraints mentioned
in Sec. III-B and Sec. III-C. If an agent chooses to keep the
current signal phase, then the next action selection occurs after
 seconds (as explained in Sec. III-B). Otherwise, it must
respect the yellow, all-red and minimum green times before
being allowed to change the signal phase again.

IV. EVALUATION

The TOS(λ)-FB is evaluated in a network of traffic signals
(discussed in Section IV-B). In that scenario, we compare
TOS(λ)-FB with a fixed-time controller optimized by a mixed-
integer program [44], and a version of our proposed controller
with radial basis functions (RBF) instead of Fourier basis.
As mentioned, contrarily to the majority of the works in the lit-
erature, we also compare to a state-of-the-art traffic-responsive
signal approach, namely the one by Lämmer and Helbing
(henceforth called Lämmer), presented in Section II-B. As a
motivating example, we also include a discussion that relates to
an isolated intersection scenario (see Section IV-A), where we
compare our method with the traditional tabular SARSA(λ).

In our experiments, a period of 86400 seconds (one day)
is simulated. The results presented in all following figures are
averaged over 20 runs with different random seeds, and the
shadowed area in the plots depicts the standard deviation
regarding delay or queue length, accordingly. The lines were
smoothed with a moving average window of 300 seconds
(5 minutes) for better clarity.

According to [45] the order of the Fourier approximation
was set to n = 7 for all the following experiments. As we
are dealing with intersections with multiple lanes and signal
phases, and the number of Fourier basis functions grows
exponentially on the number of dimensions of the state space,
it is necessary to restrict the number of Fourier basis. We can
meet this condition by placing constraints on the coefficient
vectors ci , thus reducing the number of basis functions (Eq. 4).
In our experiments, we limited the number of coefficient
vectors ci by constraining them to have at most two non-
zero elements, as adding more coefficients did not improve the
results. Hence, we can still capture the relations between pairs
of features in the state space. Furthermore, a learning rate of

α = 10−6 was used. The discount factor was set to γ = 0.95,
λ = 0.1 and the exploration rate was set to ε = 0.01 (this
latter means that the agent is mostly taking the action with the
highest Q-value, but still exploring with a fixed low chance).
These values are common in the literature and produced the
best results after extensive experimentation.

A. Isolated Intersection: Scenario and Results

To be able to comprehensively evaluate the efficiency of
our RL control we first applied it to an isolated multi-lane
intersection with various set-ups, especially different traffic
saturation conditions. The results are discussed in detail in a
previous preliminary study [46]. Also, we evaluated the use
of other state or reward definitions and discussed the choice
of the order of the Fourier basis approximation. This section
only gives an overview of the most important findings of this
previous study.

The isolated intersection featured here has four incoming
approaches with multiple lanes. In the horizontal direction,
there is a dedicated left turning lane in each traffic approach,
as well as three lanes for straight traffic. In the vertical
direction, there are two lanes for straight traffic. Traffic signals
are grouped into three non-conflicting signal phases: straight
traffic in horizontal direction; left-turning traffic in horizontal
direction; vertical direction. While switching between two
signal phases, there is an all-red period of one second. The
minimum green time gmin for a signal phase is five seconds.

The fixed-time controller optimized with Webster’s
method [31] has a cycle time of 40 seconds and splits green
times according to average flow rates (see ahead for details on
the demand). Traffic-responsive approaches do not have a fixed
cycle time. In particular, for Lämmer’s algorithm, a desired
and a maximal cycle time can be defined (for this scenario
40 and 60 seconds are used, respectively). For our RL-based
control, a maximal green time gmax of 30 seconds per signal
phase is used.

Regarding the demand in the base set-up, we have
1800 vehicles on average per hour in each horizontal approach.
Additionally, there are 180 vehicles on average per hour,
which turn left at the intersection, in each horizontal approach.
In the vertical direction, there are 600 vehicles on average
per hour from each approach—all going straight. Furthermore,
arrival rates are stochastic: vehicles are inserted as platoons
with a platoon size that is exponentially distributed around an
expected value of five. Also, the time gap between vehicle
platoons is exponentially distributed; its expected value is the
platoon size divided by the average flow value.

1) Tabular Vs. Linear SARSA(λ): In order to transform the
continuous state space defined in Section III-A to a discrete
state space for the tabular SARSA(λ), the continuous attributes
were discretized in equally distributed bins/intervals. In order
to allow a fair comparison, the same discount factor, value of
λ and exploration rate were used for both methods, except for
the learning rate, which was set to α = 0.1 for the tabular
SARSA(λ).

In Fig. 2 the average delay per vehicle at each second of the
simulation is depicted for true online SARSA(λ) with Fourier
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Fig. 2. Average delay for tabular and linear function approximation RL traffic
signal controllers in the isolated intersection scenario.

Fig. 3. Average delay per vehicle in the isolated intersection scenario with
varying demand as described in Section IV-A 2).

Fig. 4. Inner-city network of Cottbus with 22 signalized intersections.

basis linear function approximation and for tabular SARSA(λ)
with 8 vs. 10 discretization bins of the q and ω features (see
Eq. 8). Reducing the number of bins from 10 to 8 significantly
speeds up the learning and reduces the delay, as the number
of discretization bins exponentially increases the size of the
state space. However, by reducing the number of bins, different
states (in which different actions are optimal) are perceived as
the same, thus leading to sub-optimal performance in the long
run. In short, the aim of this experiment is to show that the
usage of function approximation not only avoids the curse of
dimensionality, but also introduces generalization. With that,
the TOS(λ)-FB yields a much faster learning curve and overall
lower delay values.

Fig. 5. Total queue length and delay over time in the Cottbus scenario.

Fig. 6. Total queue length and delay over time in the afternoon peak.

2) Comparison With Fixed-Time and Rule-Based Signals:
Fig. 3 depicts the results obtained when we interleave periods
of 2000 seconds each, varying the demand. More specifically,
we consider five such periods in which the demand in the
horizontal approaches are twice those from the base set-up
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Fig. 7. Total waiting time at the 22 signalized intersections in the Cottbus scenario.

just mentioned. This aims at analyzing the effect of fluctuating
demand on the performance of the RL-based controller.

One can see that TOS(λ)-FB is able to handle overload
situations and quickly reduces the queues afterward. Recall
that, contrarily to rule-based approaches, the RL control does
not require domain knowledge.

B. Network of Intersections – City of Cottbus

To be able to test TOS(λ)-FB for signal control in a more
realistic scenario with multiple signalized intersections, this
study considers a scenario of the city of Cottbus, Germany.
Input data for network, demand, optimized fixed-time signal
plans and Lämmer’s rule-based adaptive signals are taken from
previous studies [18], [38], [44], which are here summarized.
The network consists of approx. 10000 links and 4000 nodes
and captures a region of about 1800 km2 around the city. Daily
home-work-home activity chains of around 33000 commuters
living and working in the region are simulated using MATSim.
In Fig. 4 we show a zoom of such area, depicting 22 signal-
ized intersections in the inner city of Cottbus. Most of the
signalized intersections have separate lanes and signal timings
for left or right turns.

To be able to compare the signal control approaches with
different traffic saturation conditions, we run the Cottbus
scenario with different capacity factors, which scale the flow
and storage capacity of links accordingly, to simulate higher
or lower congestion levels. A smaller capacity factor leads
to lower flow and storage capacity values on the links and
therefore corresponds to a higher congestion level, and vice
versa. The base case scenario taken from the previous studies
uses a capacity factor of 0.7 (i.e., 70% of the original link
capacities are used because only home-work-home trips are
simulated). Here, we run simulations with a range of different
values: 0.5, 0.6, 0.7, 0.8 and 0.9.

Unless noted, the values of the parameters are the same
from the isolated intersection scenario. One such exception
regards the maximum green time gmax , which was set to
60 seconds to be consistent with the Cottbus scenario and,
therefore, comparable to the fixed-time and Lämmer’s control.
However, this maximum green time was hardly reached by
TOS(λ)-FB.

C. Results for the Network Case

In Fig. 5 we compare the total queue length and
the total delay resulted with TOS(λ)-FB, TOS(λ)-RBF

(which corresponds to our method with radial basis func-
tion [1] approximation instead of Fourier basis), Lämmer, and
fixed-time controllers. For fairness of comparison, we used
for the RBF approximation of TOS(λ)-RBF the same number
of basis used for TOS(λ)-FB. The RBF functions (which
are modeled as Gaussian curves) were created using n = 7
different centers evenly distributed along each dimension of
the state space. We can observe that the fixed-time controller
produces much higher delay and queue length and oscillates
more than the other controllers. TOS(λ)-FB resulted in slightly
better results than Lämmer, especially in the afternoon peak.
Although TOS(λ)-RBF shows good performance (similar to
Lämmer in some periods of the simulation), it never results
in lower queue lengths or total delay when compared to
TOS(λ)-FB. Notice that these results confirm the findings
of [3] regarding the use of the Fourier basis to approximate
the Q-function.

For clarity, we zoom in Fig. 6 by removing the fixed time
curve from the comparison and focusing on the afternoon
peak. It can be seen that TOS(λ)-FB yields lower queue
lengths during the whole period (top plot in Fig. 6). Regarding
the total delay (bottom plot), TOS(λ)-FB starts worse, but
afterward is able to beat Lämmer. This shows that although
being related, both metrics (queue length and delay) are not
perfectly correlated: a signal controller can reduce delay at cost
of maintaining larger queues. Despite that, in the long term
TOS(λ)-FB finds a policy that is able to outperform Lämmer
in both metrics.

Fig. 7 highlights individual results for each one of the
22 signalized intersections. One can see that different inter-
sections present very different patterns. TOS(λ)-FB shows
advantage over Lämmer in situations with less congestion,
resulting in lower waiting times for almost all intersections
in which the waiting time is less than 200000 seconds for the
fixed time control.

For the other, more congested intersections (1, 5, 6, 14, 17,
18, 25; highlighted in Fig. 4)—in which the waiting time is
above 200,000 seconds for the fixed controller—TOS(λ)-FB
performs better in at least half of them. The fixed-time con-
troller results in significantly worse results for all intersections,
which demonstrates the advantage and importance of adaptive
controllers.

Fig. 8 shows the results for the comparison of different
traffic saturation conditions. It depicts the total waiting time
for different capacity factors, whereas higher capacity factors
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Fig. 8. Overall total waiting time in the Cottbus scenario for different traffic
saturation conditions (the higher the capacity factor, the lower the demand
level).

correspond to overall lower levels of saturation (as described
in Section IV-B). One can see that changing the demand
level seems to impact all methods equally. This especially
ensures, that TOS(λ)-FB performs very well and comparable
to Lämmer’s approach also in situations with very high and,
respectively, very low traffic saturation.

V. CONCLUSION AND FUTURE WORK

As discussed in Section II, reinforcement learning is increas-
ingly being proposed as a method for controlling traffic
signals, as it is able to adapt to traffic patterns on the fly.
In the present paper, it is shown that specific techniques
from RL can help to improve the performance of traffic
signal control, and even outperform state-of-the-art rule-based
adaptive signal control algorithms. It was argued that tabular
RL methods may not be feasible due to the curse of dimen-
sionality. When it is possible to employ them, it is often the
case that they need long learning times before convergence in
the case of realistic intersections with more than two signal
phases and when a more complex definition of state is used.

To address these issues, we use an RL algorithm with
linear function approximation (the true online SARSA(λ) with
Fourier basis functions) which, to the authors’ best knowledge,
was not used for traffic signal control before. Moreover, it can
be argued that this kind of function approximation is more
interpretable as compared to non-linear functions, e.g., those
related on neural networks.

Our method TOS(λ)-FB was implemented in MATSim and
compared to fixed-time and rule-based adaptive signal control
both, in an isolated intersection scenario, as well as in a real-
world scenario (city of Cottbus, Germany). In the former case,
it can be seen that TOS(λ)-FB shows at least comparable
results, without the need for domain knowledge that underlies
rule-based and fixed time methods. To the authors’ knowledge,
this kind of comparison with other than fixed-time approaches
is rarely in the RL literature and is, therefore, a key feature
of this work.

In the case of the Cottbus network, which has 22 sig-
nalized intersections, when considering the overall measure
(over all intersections), TOS(λ)-FB has a better performance
in the afternoon peak. Considering individual intersections,
in several of these TOS(λ)-FB shows advantage over the
rule-based adaptive approach. Moreover, for more congested

intersections, TOS(λ)-FB performs better in at least half of
them. It is also worth mentioning that the fixed-time controller
results in significantly worse results for all intersections,
which demonstrates the advantage and importance of adaptive
controllers.

Furthermore, we observed that different intersections
present very different patterns, with some being critical for the
network and some not. Hence, a possible future direction is to
take a closer look at critical intersections and study how their
learned policies impact adjacent intersections in the network.
Similarly, an interesting future work is to combine our method
with route choice algorithms in scenarios where both traffic
signals and vehicles adapt simultaneously.
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