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Abstract. Reinforcement learning is an efficient, widely used machine learning technique that performs well when the state and
action spaces have a reasonable size. This is rarely the case regarding control-related problems, as for instance controlling traffic
signals. Here, the state space can be very large. In order to deal with the curse of dimensionality, a rough discretization of such
space can be employed. However, this is effective just up to a certain point. A way to mitigate this is to use techniques that
generalize the state space such as function approximation. In this paper, a linear function approximation is used. Specifically,
SARSA(λ) with Fourier basis features is implemented to control traffic signals in the agent-based transport simulation MATSim.
The results are compared not only to trivial controllers such as fixed-time, but also to state-of-the-art rule-based adaptive methods.
It is concluded that SARSA(λ) with Fourier basis features is able to outperform such methods, especially in scenarios with
varying traffic demands or unexpected events.
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1. Introduction

Traffic signal control is a challenging real-world
problem. Current solutions to this problem, such as
adaptive systems like SCOOT [18], are often central-
ized or at least partially centralized if each controller
is in charge of a portion of the urban network. Al-
ternatives are manual interventions from traffic oper-
ators or the use of fixed-time signal plans. However,
in the era of big data and advanced computing power,
other paradigms are becoming more and more promi-
nent. Among these, we find those derived from ma-
chine learning in general and reinforcement learning
(RL) in particular. The reader is referred to some sur-
veys in the area (see Section 2). In RL, traffic signal
controllers located at intersections can be seen as au-
tonomous agents that learn while interacting with the
environment.

*Corresponding author. E-mail: tziemke@vsp.tu-berlin.de.

The use of RL is associated with challenging issues:
the environment is dynamic (and thus agents must be
highly adaptive), agents must react to changes in the
environment at an individual level while also causing
an unpredictable collective pattern, as they act in a
coupled environment. Therefore, traffic signal control
poses many challenges for standard techniques of mul-
tiagent learning.

To understand these challenges, let us first discuss
the single agent case, where one agent performs an
action once in a given state, and learns by getting a
signal (reward) from the environment. To put it sim-
ply, RL techniques are based on estimates of values for
state-action pairs (the so-called Q-values). These val-
ues may be represented as a table with one entry for
each state-action pair. This works well in single agent
problems and/or when the number of states and actions
is small. However, in [28] Sutton and Barto discuss
two drawbacks of this approach: First, a lot of memory
is necessary to keep large tables when the number of
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state-action pairs is huge, which tends to be the case
in real-world applications. Second, a long exploration
time is required to fill such tables accurately. Those au-
thors then suggest that generalization techniques may
help in addressing this so-called curse of dimensional-
ity.

An efficient representation of the states is a key fac-
tor that may limit the use of the standard RL algorithms
in problems that involve several agents. Moreover, in
scenarios in which the states are represented as contin-
uous values, estimation of the state value by means of
tabular Q-values may not be feasible. To deal with this
problem, in this paper a true online SARSA(λ) algo-
rithm with Fourier Basis linear function approximation
is used. As discussed ahead, this option is based on the
fact that non-linear function approximation has several
drawbacks.

The RL-based adaptive signal control algorithm was
implemented in the open-source agent-based transport
simulation MATSim [17]. In MATSim, it is possible
to investigate the impact of the RL-based adaptive sig-
nal control algorithm and compare it to other fixed-
time or adaptive signal control methods. For compari-
son, we run our approach against a rule-based adaptive
signal control algorithm based on Lämmer and Hel-
bing [22], which was implemented in MATSim in a
previous study [20,30]. The results show that the RL-
based approach is able to outperform these approaches
in a single intersection scenario. This is especially no-
table, as these approaches were designed specifically
for dealing with the control of signals, whereas the
RL-based approach needs no domain knowledge. To
the authors’ best knowledge, virtually no other work
in the literature (especially those stemming from the
RL area) includes such kind of comparison. More often
than not, comparison of RL approaches is made only
to a fixed-time scheme.

The remaining of this paper is organized as fol-
lows. The next section discusses background and re-
lated work; this includes the rule-based adaptive sig-
nal control algorithm that is used as comparison in this
study. The RL-based approach developed in this study
is described in Section 3. Experiments and results are
presented in Section 4, whereas Section 5 contains a
discussion of the results and future work.

2. Background and related work

This section introduces some concepts on traffic sig-
nal control (Section 2.1) and gives more details about

one method in particular, which is used as compari-
son (Section 2.2); then we discuss related work that is
based on RL; the last subsection presents the simula-
tion environment MATSim.

2.1. Traffic signal control

In contrast to fixed-time signals that cyclically re-
peat a given signal plan, traffic-responsive signals re-
act to current traffic by adjusting signal states based
on sensor-data (e.g., from upstream inducting loops or
cameras). They can, therefore, react to changes in de-
mand and reduce emissions and waiting times more ef-
ficiently.

A variety of traffic-responsive signal control algo-
rithms have been developed. An overview is given,
e.g., by Friedrich [8]. Different levels of adjustment
are distinguished: actuated signals use a fixed-time
base plan and adjust parameters like green split, cy-
cle time or offset. (Fully) adaptive signals decide about
the signal states on the fly. They can modify phase
orders or even combine signals into different phases
over time. With this, the flexibility of the signal op-
timization is augmented, which increases the possi-
ble improvement, but makes the optimization prob-
lem more complex. In order to reduce complexity and
communication effort between sensors and a central
computation unit (which controls signal states system-
wide), decentralized (also called self-controlled) meth-
ods decide locally about signal states without complete
knowledge of the system. Usually, every signalized in-
tersection has its own processing unit that accounts for
upstream (and sometimes downstream) sensor data of
all approaches. A challenge of decentralized systems
is to still ensure system-wide stability, especially when
dealing with oversaturated conditions. A number of
methods were developed that tackle these challenges.

Examples of traffic-responsive approaches from var-
ious generations and technological basis are: SCOOT
[18] SCATS [23]; Prodyn [16]; OPAC [9]; UTOPIA
[6]; TUC (Traffic-responsive Urban Traffic Control)
[7]; and TUC combined with predictive control [5].
Some can be considered as rule-based as for exam-
ple Lämmer and Helbing [22]), while others use tech-
niques from RL and model signals as learning agents
(see Section 2.3).
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2.2. Lämmer’s rule-based adaptive traffic signal
control algorithm

The idea of the self-controlled signals proposed by
Lämmer and Helbing [22] is to minimize waiting times
and queue lengths at decentralized intersections while
also granting stability through minimal service inter-
vals. The algorithm combines two strategies. The opti-
mizing strategy selects the signal phase i to be served
next as the one with the highest priority index πi (see
Eq. (1)), which takes into account outflow rates and
queue lengths of waiting and approaching vehicles that
are registered by sensors. Given a prediction of the ex-
pected queue length n̂i (t, τ ) at time τ > t and the max-
imum outflow rate qmax

i for phase i, one can derive the
expected required green time ĝi (t, τ ) for clearing the
queue at time t using ĝi (t, τ ) = n̂i (t,τ )

qmax
i

. With this, the

priority index is calculated as follows:

πi(t) =
⎧⎨
⎩

maxτi (t)�τ�τ 0
i

n̂i (t,τ )
τ+ĝi (t,τ )

, if i = σ(t)

n̂i (t,τ
0
i )

τ
pen
σ(t)

(t)+τ 0
i +ĝi (t,τ

0
i )

, if i �= σ(t).
(1)

Two cases are distinguished depending on whether the
phase i is already active or not. In either case, the equa-
tion basically divides the number of vehicles by the
time needed to clear the queue including the (remain-
ing) intergreen time. The priority index can, therefore,
be interpreted as a clearance efficiency rate. τ includes
either the effect of remaining intergreen time for the
selected phase (when it has not yet switched to green),
or a lookahead beyond the end of the current queue.
It is bounded from below by the remaining intergreen
time τi(t), since that time, if larger than zero, will be
incurred before traffic can flow, and from above by the
full intergreen time τ 0

i , since beyond that it is possi-
ble to just switch back from some other state. For a
non-active phase (i.e., i �= σ(t)), the priority index is
reduced by a canceling penalty τ

pen
σ(t)(t). This prevents

the optimizing regime from frequently switching sig-
nal phases. The penalty can be interpreted as the av-
erage additional waiting time for vehicles at the previ-
ously served links that would occur upon cancellation.
The priority index as it is defined in Eq. (1) assumes
that each signal phase only serves one link – which is
why phases and links are both denoted by i here. The
algorithm was further extended to be able to deal with
realistic traffic situations like lanes, phase combination
with opposing traffic, minimum green times, and over-
load. Since these extensions make the equation less

readable while the main method stays the same, the au-
thors refer to Thunig et. al [30] for more details.

An enclosing stabilizing strategy ensures that each
link is at least served once during a specified minimal
service interval to prevent spillbacks. Links that have
to be stabilized are added to a stabilization queue. If
the queue is non-empty, the phase corresponding to the
first element of the queue is switched to green for a
guaranteed green time gs

i depending on the average ca-
pacity utilization. If the stabilization queue is empty,
the optimizing strategy takes over. Lämmer’s control
claims to provide intrinsic green waves and locally op-
timal service, which also results in system-wide opti-
mal service.

An assumption of Lämmer’s algorithm is the queue-
representation of traffic flow: If a link i is served, ve-
hicles can leave the link with a constant outflow rate
qmax
i , which is assumed to be known. Additionally,

queues are assumed to be non-spatially, i.e., the algo-
rithm does not account for vehicles spilling back to up-
stream lanes or links. Demand is supposed to be man-
ageable on average with the desired cycle time T to
ensure stability.

Two sensors are used to predict the number of wait-
ing vehicles per link and time. One is positioned at the
end of the link to detect waiting and outflowing ve-
hicles; the second one is located further upstream to
detect approaching vehicles. Assuming free flow con-
ditions at link i, one can estimate the length of the
queue ni(t) at time t and predict the expected queue
length n̂i (t, τ ) at a time τ > t . While the estimation of
queue lengths allows uncertainty, the mere presence of
a queue is definite.

2.3. Reinforcement learning

In RL, an agent’s goal is to learn an optimal con-
trol policy π∗, which maps a given state to the best
appropriate action by means of a value function. We
can model RL as a Markov decision process (MDP)
composed by a tuple (S,A, T ,R), where S is a set of
states; A is a set of actions; T is the transition func-
tion that models the probability of the system moving
from a state s ∈ S to a state s′ ∈ S, upon perform-
ing action a ∈ A; and R is the reward function that
yields a real number associated with performing an ac-
tion a ∈ A when one is in state s ∈ S. An experi-
ence tuple 〈s, a, s′, r〉 denotes the fact that the agent
was in state s, performed action a and ended up in s′
with reward r . Let t denote the t th step in the policy π .
In an infinite horizon MDP, the cumulative reward in
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the future under policy π is defined by the Q-function,
Eq. (2), where γ ∈ [0, 1] is the discount factor for fu-
ture rewards.

Qπ(s, a) = E

[ ∞∑
τ=0

γ τ rt+τ |st = s, at = a, π

]
(2)

Since the agent’s objective is to maximize the cu-
mulative reward, if it learned the optimal Q-values
Q∗(s, a) for all state-actions pairs, then the optimal
control policy π∗ is as follows:1

π∗(s) = argmaxa Q∗(s, a) ∀s ∈ S, a ∈ A. (3)

RL methods can be divided into two categories:
Model-based methods assume that the transition func-
tion T and the reward function R are available, or in-
stead try to learn them. Model-free methods, on the
other hand, do not require that the agents have access
to information about how the environment works.

There are many studies that use RL to improve traf-
fic signal performance. For details, we refer the reader
to some survey papers, which cover different aspects
and perspectives: [4,24,37,38].

Using RL for traffic signal control is especially
promising, as one does not need a lot of domain knowl-
edge (as opposed to, e.g., rule-based approaches);
rather, the controller learns a policy by itself. However,
issues may arise with the aforementioned curse of di-
mensionality. In fact, depending on the specific formu-
lation (e.g., how states and action spaces are defined),
the search space can be very high. For instance, con-
sider an intersection with four incoming approaches
with three lanes per approach. If we define the state as
the queue length on each lane discretized in 10 levels,
it results in 10(4×3) distinct possible states. The reader
is referred to [38] for several variants of such formula-
tions.

In [24,26,27], RL is used by traffic signals in order
to learn a policy that maps states (normally queues at
junctions) to actions (normally keeping/changing the
current split of green times among the lights of each
phase). In [27] the approach is centralized (a single
entity holds the MDP for all traffic signals); a central
authority receives information about the length of the
queues and elapsed time from various lanes to make
a decision about timings at each signal. On the other
hand, the approaches in [24] and [26] are decentral-

1For converge guarantees, in the case of QL, please see [35].

ized. Each junction learns independently (normally us-
ing QL).

Since most of these works use QL, and thus approx-
imate the Q-function as a table, they may fall prey to
the curse of dimensionality. This arises when one deals
with realistic scenarios, as, e.g., those beyond 2-phase
intersections that are common in the literature.

In order to address this, a few works used func-
tion approximation. For instance, [1] uses tile coding
in function approximation. However, the definition of
states only considers queue length.

Recently, many studies have achieved impressive re-
sults using deep neural networks to approximate the
Q-function (e.g., DQN [25,32,39]). However, linear
function approximation has guaranteed convergence
and error bounds, whereas non-linear function ap-
proximation is known to diverge in multiple cases
[3,29]. Moreover, linear function approximation is less
computation-intensive, as it relies on a significantly
fewer number of parameters. Thus, if the Q-function
can be linearly approximated with sufficient precision,
linear function approximation methods are preferable.

2.4. Transport simulation

As deployment, operations, and maintenance costs
of traffic-responsive signals in general are high, trans-
port simulation tools provide a perfect environment
to systematically test and evaluate new signal control
methods before applying them in the field.

The agent-based transport simulation MATSim [17],
which is used in this study, is especially suitable in
this regard, as it is able to run large-scale real-world
simulations in reasonable time as. Simulations can be
build based on open data (see, e.g., the open Berlin sce-
nario [40]) such that the impact of new signal control
approaches can be easily analyzed for arbitrary sce-
narios2 and compared to other control methods. Be-
cause of its agent-based structure, agent-specific wait-
ing times and varying queue lengths over time at traffic
lights can be directly analyzed and compared.

In MATSim traffic is modeled by agents (i.e., per-
sons) that follow a daily plan of activities and trips.
Traffic flow is modeled mesoscopically by spatial first-
in-first-out (FIFO) queues. Vehicles at the head of a
queue can leave a link when the following criteria
are fulfilled: (1) The link’s free-flow travel time has

2An example on how to start a MATSim simulation using the RL
signal control presented in this paper can be found at http://matsim.
org/javadoc → signals → RunSarsaLambdaSignalsExample.

http://matsim.org/javadoc
http://matsim.org/javadoc
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Fig. 1. Links with multiple lanes in MATSim. Each lane is repre-
sented by its own FIFO queue. Traffic signal control for different
turning moves is captured. Vehicles on different lanes can pass each
other, unless the queue spills over. Source: [12].

passed, (2) the flow capacity of the link is not exceeded
in the given time step, and (3) there is enough space
on the next link. Despite this simplistic modeling ap-
proach, congestion, as well as spillback, can be mod-
eled.

The traffic signal control module was developed by
Grether as an extension to MATSim [13]. If a signal
exists on a link, leaving the link is not possible while
it shows red. First studies focused on fixed-time sig-
nals, but also approaches for traffic-responsive signal
control have been implemented [11,20,30]. Kühnel et
al. [20] and Thunig et al. [30] present the implementa-
tion and application of the rule-based signals from Sec-
tion 2.2 in MATSim. This implementation is also used
in the present study as comparison for the RL signal
control.

Separated waiting queues for different turning direc-
tions at intersections can be modeled in MATSim by
lanes, which are a substructure of links (see Fig. 1).
They are especially useful to model protected left turns
at signalized intersections. Also, the spatial interaction
of different waiting queues on a link can be captured
correctly by lanes, as Fig. 1(b) depicts. Each lane can
be signalized separately. Signals and lanes in MATSim
are more extensively described by Grether and Thunig
[12].

Events of vehicles entering or leaving links and
lanes are thrown on a second-by-second time resolu-
tion in the simulation. Sensors on links or lanes that
detect single vehicles can be easily modeled by listen-
ing to these events. As in reality, the maximum fore-
cast period of such sensors is limited – vehicles can
only be detected when they have entered the link. If

a link is short, forecasts might not be accurate. In the
simulation, responsive signals use these sensor data to
react dynamically to approaching vehicles. For every
signalized intersection, the control unit is called every
second to decide about current signal states. With that,
also RL-based signal control approaches can be easily
installed into the simulation framework.

In general, MATSim can model user reaction as
route, mode or departure time changes. But for this
paper, only the traffic flow simulation of MATSim is
used. Readers interested in the evolutionary part of
MATSim – i.e., how agents adapt their plans and how
long-term effects can be analyzed – are referred to [17].

3. Methods

In this section, we first discuss the method used for
function approximation, then give details about the for-
mulation of state and action space, as well as rewards,
for the specific domain of signal control.

3.1. Fourier basis linear function approximation with
the true online SARSA(λ)

The proposed RL traffic signal controller imple-
ments the true online SARSA(λ) algorithm [34], a
modification of the traditional SARSA(λ) that was
demonstrated to have better theoretical properties and
outperform the original method [33]. The algorithm
is called true online because it matches its update
target (an estimate of the expected cumulative sum
of rewards) exactly, in contrast to classical online
SARSA(λ), which only approximates it. As detailed
later, we use two kinds of features, thus impacting the
space state. In order to deal with high dimensional state
spaces, the Q-function was linearly approximated us-
ing the Fourier basis scheme [19].

When linear approximation is used, the Q-values
Q(s, a) for each discrete action a are approximated
as a weighted sum of a set of m basis functions
φ1, . . . , φm, as in Eq. (4), where θ is the learned vector
of weights. We denote φ(s, a) (and the shorthand φ) as
the vector containing the values of all basis functions
φi .

Q(s, a) = θTφ(s, a) =
m∑

i=1

θiφi(s, a) (4)

The Fourier series is one of the most commonly used
continuous function approximation methods, present-
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ing solid theoretical foundations. In [19], it was empir-
ically shown that Fourier basis outperforms other com-
monly used approximations methods such as polyno-
mial and radial basis functions in continuous RL do-
mains.

When applying Fourier series to the RL setting, it is
possible to drop the sin terms of the series.3 Then, for a
n-th order Fourier approximation, each basis function
φi is defined as in Eq. (5), where ci = [c1, . . . , ck] is
a vector that attaches an integer coefficient c1�j�k ∈
[0, . . . , n] to each feature in s, and k is the dimen-
sion of the state space. The coefficient cj in each co-
efficient vector ci determines the basis function’s fre-
quency along the j -th dimension of the state space.
Note that the basis functions of all actions except the
current action at are zeroed, as only the weights corre-
sponding to the selected action must be updated.

φi(s, a) =
{

cos(πci · s), if a = at

0, if a �= at

(5)

The set of basis functions φ1, . . . , φm can be ob-
tained by systematically enumerating all possible coef-
ficient vectors. Furthermore, as we increase the order n

of the approximation, more frequencies are used. How-
ever, as the number of Fourier basis functions grows
exponentially on the state space dimension, the user
can impose constraints on the coefficient vectors to re-
duce the number of basis in scenarios with large state
spaces. A simple approach is to limit each coefficient
vector to have a maximum number of non-zero coeffi-
cients. For instance, restricting the coefficient vectors
to at most two non-zero coefficients allows us to cap-
ture the relation between pairs of features in the state
space.

After the execution of action at , the weights θ are
updated via gradient descent, following the true online
SARSA(λ) with linear function approximation update
rule, as in Eq. (6), where δ = rt + γQ(st+1, at+1) −
Q(st , at ) is the temporal difference error and Qold is a
scalar temporary variable initialized with zero and set
to Qold ← Q(st+1, at+1) after every step.

θ ← θ + α(δ + Q − Qold)e − α(Q − Qold)φ (6)

This update rule objective is to minimize the tem-
poral difference error δ, which denotes the error in the
current estimates of the Q-values. We refer the reader
to [33] for details on its derivation.

3For detailed explanation, please see [19].

The eligibility traces vector e in Eq. (6) – which is
used to address the credit assignment problem – is up-
dated as in Eq. (7). Each weight update also takes into
account previously visited states, which are credited
accordingly to the values accumulated on the vector e.
The parameter λ ∈ [0, 1] controls the decay of the el-
igibility traces at each time step. The higher the value
of λ, the higher is the influence of past updates in the
update of the current step.

e ← γ λe + φ − αγλ(eTφ)φ (7)

Given the base learning rate α, each weight θi is
updated with the scaled learning rate αi = α/‖ci‖2,
as proposed in [19]. Both the weights and eligibility
traces vectors are initialized with zeros.

In order to address the exploration–exploitation
dilemma, the ε-greedy exploration strategy is used to
choose actions: the action with the highest Q-value is
selected with a probability of 1−ε and a random action
is selected with probability ε.

Next, we give the formulations that are specific to
the domain of signal control.

3.2. State space

In RL problems, the definition of state space strongly
influences the agents’ behavior and performance. In
traffic signal control, for instance, information related
to the level of congestion in the approaching lanes is
fundamental in order to appropriately choose the next
active signal phase.

In the present setting, the agent observes a vector
st ∈ R

k at each time step t . This vector partially rep-
resents the true state of the controlled intersection and
is defined as in Eq. (8), where E is the set of all links
of the intersection and L is the set of all approaching
lanes, ρi ∈ {0, 1} is a binary feature active when i is the
current selected signal phase, τ ∈ [0, 1] is the elapsed
time of the current signal phase divided by the maxi-
mal green time gmax, the density e ∈ [0, 1] is defined
as the number of vehicles on link e ∈ E divided by
it’s storage capacity and ql ∈ [0, 1] is defined as the
number of queued vehicles on lane l ∈ L divided by
the storage capacity of the lane.

st = [ρ1, . . . , ρ|σ |, τ, q1, . . . , q|L|,1, . . . ,|E|] (8)

This state definition is inspired by [10], where authors
achieved similar performance levels, even when using
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more complex state definitions (e.g., including posi-
tions of each vehicle in the approaching lanes).

As common in the literature, the proposed RL signal
control is only called every three seconds. This means,
that one time step for the traffic signal agent corre-
sponds to three seconds of simulation. This reduces the
complexity and the size of the state space, without sig-
nificantly reducing the performance.

3.3. Action space

At each time step t (every three seconds), the traf-
fic signal controller chooses a discrete action at ∈ A.
In our setting, the number of actions is equal to the
number of possible signal phases, therefore, |A| = |σ |.
There are two restrictions in the action selection: the
agent can change the current active signal phase only
if the elapsed time is greater or equal than the minimal
green time gmin and keep it only if the elapsed time is
less than the maximal green time gmax. These restric-
tions ensure the feasibility of the signal controller for
real-world applications.

3.4. Reward

After taking action at , the traffic signal controller
receives a scalar reward rt ∈ R. As in [10] the reward is
defined as the change in cumulative delay, as given in
Eq. (9), where Dat and Dat+1 represent the cumulative
delay at the intersection before and after executing the
action at .

rt = Dat − Dat+1 (9)

In its turn, the cumulative vehicle delay D, for any
time t , is computed as in Eq. (10), where Vt is the set
of vehicles on incoming approaches and dv

t is the delay
of vehicle v at time t .

Dt =
∑
v∈Vt

dv
t (10)

4. Experiments and results

4.1. Scenario

This study focuses on a single intersection scenario
with four different set-ups. The set-ups vary in demand
and/or number of lanes that are usable. The RL con-
trol is compared to a fixed-time signal control and rule-

Fig. 2. Single intersection scenario.

based traffic-responsive signal control based on [22]
(as introduced in Section 2.2).

Nevertheless, the proposed RL method for traffic
signal control is also applicable to real-world scenar-
ios. To do so, every signalized intersection can be mod-
eled as an individual learning agent, only working with
local sensor information. This way, green waves are
not specifically tackled or pre-defined. We note how-
ever that, they may be considered if a different reward
function is defined, which is designed to reward offsets
that are inline with the emergence of a green wave.

Further, to address more complex scenarios, a set-
ting that considers a network of signals is being inves-
tigated, were we show that the RL signal control pro-
posed here is able to keep up with – and in some sit-
uations is even able to outperform – Lämmer’s algo-
rithm in a real-world scenario with multiple signalized
intersections (see [2]).

4.1.1. Traffic signals
The single intersection featured here (see Fig. 2) has

four incoming approaches. In the horizontal direction,
there is a dedicate left turning lane in each traffic ap-
proach, as well as three lanes for straight traffic. In the
vertical direction, there are two lanes for straight traf-
fic.

Traffic signals are grouped into three non-conflicting
signal phases: Straight traffic in horizontal direction;
left turning traffic in horizontal direction; vertical di-
rection. While switching between two signal phases,
there is an all red period of one second. The minimum
green time for a signal phase is five seconds.

The fixed-time control that is used for comparison
purposes is optimized by Webster’s method [36]. It has
a cycle time of 40 seconds and distributes green times
according to average flow rates. The traffic-responsive
signal approaches do not have a fixed cycle time: For
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Lämmer’s control algorithm, a desired and a maximal
cycle time can be defined (for this scenario 40 and 60
seconds are used, respectively). For the RL control a
maximal green time of 30 seconds per signal phase is
used. As mentioned in Section 3.1, the RL control is
only called every three seconds to decide about new
signal states.

All these parameter settings (such as all red time,
minimum green time, update time etc.) can of course
be adjusted when applying the RL signal control to
other scenarios.

4.1.2. Demand
Four different demand set-ups are modeled. In all

set-ups, arrival rates are stochastic: vehicles are in-
serted as platoons, with a platoon size that is expo-
nentially distributed around an expected value of five.
Also the time gap between vehicle platoons is expo-
nentially distributed: its expected value is the platoon
size divided by the average flow value. To average out
the fluctuations in the results depending on the specific
platoon structure of approaching vehicles, each set-up
was simulated with 20 different random seeds.

Constant demand. In a first set-up, there is traffic go-
ing straight in the horizontal direction, with 1800 ve-
hicles approaching on average per hour, in each of the
two approaches. In the vertical direction, there are 600
vehicles on average per hour from each side – all go-
ing straight. Additionally, there are 180 vehicles on av-
erage per hour from both sides in horizontal direction
that want to turn left at the intersection. A period of
86,400 seconds (i.e., one day) is simulated.

Peaks with doubled demand. In a second set-up, the
demand is doubled during five time periods over the
day of 2,000 seconds length each, in order to ana-
lyze the effect of fluctuating demand on the perfor-
mance of the RL controller. To be more precise, in
the time intervals [0, 2,000), [20,000, 22,000), [40,000,
42,000), [60,000, 62,000), and [80,000, 82,000) the av-
erage flow rates in horizontal direction are 3600 vehi-
cles per hour going straight and 360 vehicles per hour
going left per approach, whereas in vertical direction
the average flow rate per approach is 1200 vehicles
per hour. During the rest of the simulation, the average
flow rates are the same as for the first scenario set-up.

With this demand set-up, it can be analyzed how the
control algorithms behave with short periods of over-
load. Because these periods periodically repeat, the RL
control is able to learn from peak to peak while the
other controllers behave similarly in all peaks.

Fig. 3. Average number of departures per second per direction for
the third demand set-up with asymmetric periodic demand.

Asymmetric periodic demand. In this third set-up,
an artificial morning and evening peak are simulated
around a daily demand level that corresponds to the
first set-up. To model the peaks, a sinus curve modi-
fies the average flow values. In the morning peak, this
sinus curve has its maximum at 8 am with twice the
daily demand level for the horizontal direction and 1.5
times the daily demand for the vertical direction. In the
evening, this factors are swapped (1.5 for horizontal
direction; 2 for vertical direction) with a maximum at
6 pm. During the day (between 10 am and 4 pm), a
constant demand level similar to the first demand set-
up is used; during the night one half of this constant
demand is used. Figure 3 shows the number of depar-
tures per second per direction resulting from this set-
up. The x-axis is trimmed to the interesting part of the
day. The shadowed area depicts the standard deviation.
The lines are smoothed with a moving average window
of 300 seconds (i.e., 5 minutes) for better clarity.

Having this kind of asymmetric periodic demand
makes the situation more difficult for the RL control
because a wider spectrum of the state space (i.e., of
different vehicle pattern) has to be observed and ex-
plored. On the other hand, for Lämmer’s algorithm, the
evening peak in this set-up is especially challenging, as
the main traffic approaches from the secondary road.
This is due to the way the algorithm prioritizes between
approaches with different flow capacities.

Constant demand with lane closure. For the fourth
set-up, a constant demand is used, with 1100 vehicles
on average per hour in each of the two approaches of
the horizontal direction and, in each case, additionally
110 vehicles on average per hour that want to turn left.
Vertical traffic corresponds to the first demand set-up
(600 vehicles per hour).

Between 6 am and 6 pm a lane closure (e.g., due to a
road work) is simulated eastbound in horizontal direc-
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tion which results in a reduction of flow capacity to one
third (two lanes are closed). This interesting to look at
because Lämmer’s adaptive algorithm is not capable of
dealing with such a spontaneous capacity change and
still assumes the old flow capacity values, while RL is
able to learn from the new situation without any do-
main knowledge.

4.2. Results

The proposed method of the true online SARSA(λ)

with Fourier basis linear function approximation for
signal control is applied to the single intersection sce-
nario presented in the previous section and compared
to RL signal control methods with other configura-
tions (in Section 4.2.1, where our method is compared
to a tabular variant), as well as to a fixed-time and a
rule-based adaptive signal control approach (in Sec-
tion 4.2.2).

Due to the stochastic arrival rates, results presented
here are averaged over 20 runs with different random
seeds, whereby the random seed influences the platoon
structure of approaching vehicles (the average flow rate
stays the same).

The shadowed area in the plots depicts the stan-
dard deviation regarding average delay or total queue
length, accordingly. The lines are smoothed with a
moving average window of 300 seconds (i.e., 5 min-
utes) for better clarity.

4.2.1. Comparison with other RL-based signal
control methods

Here we compare the proposed method with the tra-
ditional tabular SARSA(λ) [28], using the first set-up
of the scenario presented in Section 4.1. We also dis-
cuss optimal settings regarding the order of the Fourier
basis approximation, state and reward.

Tabular vs. linear SARSA(λ). In order to transform
the continuous state space defined in Section 3.1 to
a discrete state space for the tabular SARSA(λ), the
queue q and density  attributes were discretized in
equally distributed bins/intervals. The binary features
ρi for each phase are already discrete and the feature
τ has a finite number of possible values as the elapsed
time increases in steps of five seconds; therefore, they
did not need to be discretized.

In order to allow a fair comparison, the same dis-
count factor, value of λ and exploration rate were
used for both methods. The discount factor was set
to γ = 0.95, λ = 0.1 and the exploration rate was
set to ε = 0.01 (this latter means that the agent is

Fig. 4. Average delay for tabular and linear function approximation
RL implementations.

mostly taking the action with the highest Q-value, but
still exploring with a fixed low chance). For the tabu-
lar SARSA(λ), a learning rate of α = 0.1 was used,
while for true online SARSA(λ) with linear function
approximation, α = 10−6 was used. These values are
common in the literature and produced the best results
for each method after extensive experimentation with
different values.

As the state space in this case is large, and the num-
ber of Fourier basis functions grows exponentially on
the number of dimensions of the state space, we placed
constraints on the coefficient vectors ci . In this setting,
adding coefficients with more than two non-zero el-
ements did not improve the results. Thus, we further
limited each coefficient vector ci to have at most two
non-zero elements.

In Fig. 4 the average delay per vehicle at each second
of the simulation is depicted for true online SARSA(λ)

with Fourier basis linear function approximation and
for tabular SARSA(λ) with 8 vs. 10 discretization bins
of the q and  features.

With 10 bins, the learning is very slow, as the num-
ber of discretization bins exponentially increases the
size of the state space. Reducing the number of bins to
8 significantly speeds up learning and reduces the de-
lay. However, by reducing the number of bins, differ-
ent states (in which different actions are optimal) are
perceived as the same, thus leading to a sub-optimal
performance in the long run.

The usage of function approximation not only avoids
the curse of dimensionality, but introduces generaliza-
tion, i.e., when updating the Q-function after taking an
action in a given state, similar states are also affected
and have their Q-values changed. With that, the true
online SARSA(λ) with Fourier basis linear function
approximation results in a much faster learning curve
and overall lower delay values.
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Fig. 5. Impact of different values for the order n of the Fourier basis
approximation.

Order of the Fourier basis approximation. Figure 5
shows the impact that the value of the Fourier approxi-
mation order n has on the agent’s performance. As ex-
pected, the higher the value of n, the more accurate is
the approximation of the Q-function. Changing the or-
der from n = 3 to n = 9 results in a notable reduc-
tion on average delay; however, when n is sufficiently
high (n = 7 and n = 9), there is no further improve-
ment. For this reason, the Fourier approximation order
is fixed to n = 7 for all following experiments.

State definition. Although the q (flow) features pro-
vide the traffic signal control agent with queue infor-
mation on each lane, the  (density) features are also
important, as they inform how many vehicles (that may
be queued in the following seconds) there are on each
link. Figure 6 shows that, by removing the  features
from the state definition, the average delay increases.
This difference might be even higher in scenarios with
very high demand, where a high number of vehicles
are moving and approaching the queues.

Reward definition. The definition of the reward func-
tion has a high impact on the performance of the RL-
based controller [15]: In Fig. 7 the reward function
defined in Section 3.1 is compared to another reward
function found in the literature [24], defined as the
change in total queue length between successive ac-
tions. The traffic signal controller using change in cu-
mulative delay as reward not only converges to bet-
ter performance, but produces a learning curve that de-
creases orders of magnitude faster. This result shows
that the choice of which reward function to use is one
of the most critical implementation decisions when de-
signing a reinforcement learning controller.

4.2.2. Comparison with fixed-time and rule-based
signals

In this section, the true online SARSA(λ) with
Fourier basis linear function approximation is com-

Fig. 6. Impact of state definition.

Fig. 7. Impact of reward definition.

pared to fixed-time and rule-based adaptive signals in
all four set-ups of the single intersection scenario.

First set-up – constant demand. Figure 8 shows the
performance regarding average delay and total queue
length for the first set-up (constant average flow rates).
It can be seen that for this, somewhat homogeneous
setup, both the RL-based and Lämmer approaches per-
form much better than the Webster fixed-time control
in terms of average delay and queue length. Also, they
produce less variation in these measures, demonstrat-
ing robustness against traffic fluctuations. Note that for
constant average flow rates, the fixed-time control used
here (optimized by Webster’s method) is already quite
good. RL is able to outperform the fixed scheme be-
cause it seems to be more stable regarding platoon vari-
ations. This can be seen in both plots in Fig. 8, with the
standard deviation (shown as the shadowed area in the
plots) being lower for the RL-based control.

Second set-up – peaks with doubled demand. Fig-
ure 9 depicts how the different signal controllers are
able to handle short phases of overload. Flow rates are
doubled during five time periods over the day (see de-
scription in Section 4.1.2). For this, less homogeneous
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Fig. 8. Single intersection scenario with constant average flow rates
(first set up of Section 4.1.2).

demand, both adaptive approaches clearly outperform
the fixed-time control which is even not able to resolve
the queues of one peak before the next peak begins.
The RL controller improves its performance from the
second peak onwards, as in the first peak it was expe-
riencing an overload situation for the first time. In this
more difficult set-up, the difference in performance be-
tween RL and Lämmer becomes less visible, with both
presenting the same length of queues when there is low
demand. Interestingly, RL decreases the queue lengths
faster than Lämmer after the peaks, which indicates
that RL better adapts to changes in flow pattern.

Third set-up – asymmetric periodic demand. This
set-up presents the effects of more heterogeneous de-
mand, where in the morning more traffic is approach-
ing on horizontal direction while in the evening more
traffic is approaching on the minor vertical road. With
this, a wider spectrum of the state space needs to be
explored by the RL-based controller because a lot of
different vehicle patterns occur. This is why RL is able
to improve further when it is run for multiple iterations
(i.e. days) in the simulation – in contrast to the first de-

Fig. 9. Single intersection scenario with periodically repeating time
periods where the average flow rates are doubled (second set up of
Section 4.1.2).

mand set-up. A comparison of average delays and total
queue length between the first and the fifths iteration is
given in Fig. 10. The x-axis is trimmed to only show
the relevant part of the day. Especially in the crowded
morning peak, learning over the days helps to narrow
and flatten the curves.

Compared to Lämmer’s rule-based control, it can be
seen that RL behaves very well in the evening peak,
when the main traffic is approaching on the minor road,
see Fig. 11. This is probably due to the priority calcu-
lation of Lämmer’s algorithm, where approaches with
lower flow capacity values result in lower priorities for
the same demand pressure. Because also a lot of traf-
fic is approaching on the major road with its high flow
capacity, the minor road does not get the main priority.
During the morning peak Lämmer and RL behave sim-
ilarly, with Lämmer resulting in lower maximal queue
length, but RL resolving the peak faster. As in the first
demand set-up, Lämmer is slightly better with low con-
stant demand values during the day.
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Fig. 10. First vs. fourth iteration (i.e., days) of RL in the single inter-
section scenario with asymmetric morning and evening peak (third
set up of Section 4.1.2).

Fourth set-up – constant demand with lane closure.
Recall that, contrarily to rule-based approaches, the
RL-based control does not require domain knowl-
edge. With this, it has advantages when unexpected
events occur that change the underlying situation (e.g.
a change in flow capacities, storage capacities, free
speed etc.). To verify this, the fourth set-up simulates a
lane closure event, where two of the three lanes in hor-
izontal direction eastbound are closed for some time
(see description in Section 4.1.2). This results in a flow
capacity drop by two thirds. As Lämmer’s rule-based
control still calculates priorities based on the original
flow capacity values, it results in quite high delays and
queue length, as seen in Fig. 12. To better see the differ-
ence between RL and Lämmer, total delay and queue
length for the fixed-time control are not shown in that
figure, as they are even higher. The x-axis is again
trimmed to the relevant part of the day.

Interestingly, RL is worse than Lämmer at the be-
ginning of the lane closure, where it is still learning
to handle this new situation. However, it quickly over-

Fig. 11. Single intersection scenario with asymmetric morning and
evening peak (third set up of Section 4.1.2).

takes Lämmer and stays more or less stable, while
Lämmer’s delay and queue length values increase fur-
ther. When the lane closure ends, queue lengths and
delays drop faster with RL, whereas Lämmer’s control
quickly takes over (similar to the first demand set-up)
as it’s domain knowledge is again beneficial.

5. Conclusion and future work

As discussed in the first two sections of the present
paper, traffic signal control is a challenging domain for
RL techniques, being the subject of an increasing body
of research. In the present paper, it was shown that
specific techniques from RL can help to improve the
performance of traffic signal control, and even outper-
form state-of-the-art rule-based adaptive signal control
methods, especially in scenarios with varying traffic
demands or unexpected events. It was argued that tab-
ular RL methods may not be feasible due to the curse
of dimensionality. When it is possible to employ them,
it is often the case that they need long learning times
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Fig. 12. Single intersection scenario with constant demand where
two lanes are closed eastbound on horizontal direction between 6 am
and 6 pm (fourth set up of Section 4.1.2).

before convergence in the case of realistic intersections
with more than two signal phases and when a more
complex definition of state is used. Recall that the re-
sults presented here show that including more features
(i.e., not only queue but also density) played a signifi-
cant role in the performance.

To address the curse of dimensionality, we used
Fourier basis linear function approximation alongside
the true online SARSA(λ) algorithm, which to the au-
thors’ best knowledge was not used for traffic sig-
nal control before. This method was implemented in
MATSim and compared to optimal fixed-time and rule-
based adaptive signal control in a single intersection
scenario, in which the demand was varied. It could be
seen that our approach outperforms the fixed-time con-
troller and is competitive with the rule-based adaptive
controller in terms of average delay and queue length.
Despite its slightly lower performance in the homoge-
neous demand set-up, the RL control is able to han-
dle overload situations and quickly reduces the queues
afterwards. Contrary to rule-based approaches, the RL

control does not require domain knowledge which is
why it clearly outperforms the rule-based approach
when unexpected events happen that change underly-
ing network properties (e.g. lane closures). Note, that
Lämmer’s rule-based approach is, similarly to our ap-
proach, a local signal control that still ensures system-
wide stability and performs well in real-world applica-
tions [21]. Finally, we remark that a comparison with
approaches other than fixed-time is rarely seen in the
RL literature and is, therefore, a key feature of this
work.

As a next step, the signal control based on true on-
line SARSA(λ) with Fourier basis linear function ap-
proximation has already been applied to real-world
scenarios using MATSim, and compared to the sig-
nal control approaches employed here [2]. The exper-
iments substantiate the performance of the RL con-
trol, which emphasize its advantage in scenarios that
are more challenging. In all real-world experiments,
the RL control was able to keep up with the rule-
based control and even outperformed it in some situ-
ations. Because we model every intersection as an in-
dependent learning agent, state and action spaces are
still computationally manageable; the computation can
even be parallelized.

As future avenues for research, we envision the fol-
lowing. First, it remains to be investigated whether the
RL signal control can be further improved by design-
ing the learning task using other space and action for-
mulations. Additionally, since the issue of which re-
ward scheme to use seems to be a key issue, a possible
extension of this work could consider using the meth-
ods proposed in [14,15] for designing a reward func-
tion that fits this domain best.

A further study will analyze the effect of self-
controlled signals by RL on the long-term decisions
of travelers, e.g. regarding route or mode choice. With
this, the problem becomes bi-level: Signal agents react
to sensor data and traveler agents react to experienced
travel times that are, in turn, affected by the signal con-
trol. As a consequence, delays and queue length might
increase again, as intersections that are efficiently con-
trolled attract more traffic. For rule-based adaptive traf-
fic signals this effect was already verified in the simu-
lation [31].
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