
Predicting the effects of COVID-19 related interventions in
urban settings by combining activity-based modelling,
agent-based simulation, and mobile phone data

Sebastian A. Müller1, Michael Balmer2, William Charlton1, Ricardo Ewert1, Andreas
Neumann3, Christian Rakow1, Tilmann Schlenther1, Kai Nagel1*

1 Transport Systems Planning and Transport Telematics, TU Berlin, Germany
2 Senozon AG, Switzerland
3 Senozon GmbH, Germany

* kai.nagel@tu-berlin.de

Abstract

Epidemiological simulations as a method are used to better understand and predict the
spreading of infectious diseases, for example of COVID-19.

This paper presents an approach that combines a well-established approach from
transportation modelling that uses person-centric data-driven human mobility modelling
with a mechanistic infection model and a person-centric disease progression model. The
model includes the consequences of different room sizes, air exchange rates, disease
import, changed activity participation rates over time (coming from mobility data),
masks, indoors vs. outdoors leisure activities, and of contact tracing. The model is
validated against the infection dynamics in Berlin (Germany).

The model can be used to understand the contributions of different activity types to
the infection dynamics over time. The model predicts the effects of contact reductions,
school closures/vacations, masks, or the effect of moving leisure activities from outdoors
to indoors in fall, and is thus able to quantitatively predict the consequences of
interventions. It is shown that these effects are best given as additive changes of the
reinfection rate R. The model also explains why contact reductions have decreasing
marginal returns, i.e. the first 50% of contact reductions have considerably more effect
than the second 50%.

Our work shows that is is possible to build detailed epidemiological simulations from
microscopic mobility models relatively quickly. They can be used to investigate
mechanical aspects of the dynamics, such as the transmission from political decisions
via human behavior to infections, consequences of different lockdown measures, or
consequences of wearing masks in certain situations. The results can be used to inform
political decisions.

Author summary

Evidently, there is an interest in models that are able to predict the effect of
interventions in the face of pandemic diseases. The so-called compartmental models
have difficulties to include effects that stem from spatial, demographic or temporal
inhomongeneities. Person-centric models, often using social contact matrices, are
difficult and time-consuming to build up. In the present paper, we describe how we
built a largely data-driven person-centric infection model within less than a month when
COVID-19 took hold in Germany. The model is based on our extensive experience with
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mobility modelling, and a synthetic data pipeline that starts with mobile phone data,
while taking the infection dynamics and the disease progression from the literature. The
approach makes the model portable to all places that have similar so-called
activity-based models of travel in place, which are many places world-wide, and the
number is continuously increasing. The model has been used since its inception to
regularly advise the German government on expected consequences of interventions.

Introduction

When COVID-19 took hold in Germany in February 2020, there was an urgent need for
a differentiated modelling capability to predict the consequences of interventions. We
used our decades-long experience with person-centric modelling of traffic [1] to build a
first prototype within two weeks [2]. An advantage of using this starting point is that
the whereabouts of all simulated persons, including their overlapping time spent at
facilities or in (public transport) vehicles, are already given by the model, which is
derived in part from mobile phone data. Since the input data contains age as an
attribute of each synthetic person, it was straightforward to include agent-dependent
disease progression into the model from the start.

The first version of our model used uniform contact intensities everywhere, and in
consequence predicted infections mostly where people spend time with other people. As
a result, that model predicted that a 50% reduction in leisure activities would reduce
the reinfection rate R by 15% while a 50% reduction in work activities would reduce R
by 19%. A reduction of all out-of-home activities by 50% resulted in a reduction of R by
62% [3].

We also could use our data source to provide the average daily duration of
out-of-home activities since March. Once they went down, we used that as a data feed
for our model to reduce the number of out-of-home activities accordingly. The model
was then improved to include the effect of aerosol transmission [4], by taking facility size
and air exchange rates into account, different for each activity type [5]. We also included
lower susceptibility and infectiousness of children as was by then reported in the
literature [6, 7]. Based on that model, we predicted that the re-opening of the schools in
Berlin after the summer vacation would be noticeable in the infection numbers, but it
would not push the infection dynamics into criticality [8]. We also predicted a second
wave in fall, based on a model for performing leisure activities indoors vs outdoors, with
infection probabilities reduced by a factor of 10 in outdoors conditions [4, 9]. After that
second wave came earlier than predicted, we re-evaluated our assumptions about spring
vs. fall temperature sensitivity; having people move outdoors at temperatures above
17.5C in spring while having them move indoors at temperatures below 25C in fall now
explains the dynamics of the epidemics in Berlin quite well.

The model is regularly used to advise the German federal government (e.g. [10, 11]).
The current main contribution of those reports is to provide differentiated predictions of
the influence of various interventions, such as reductions of activity participation, masks,
or vaccinations. For the present paper, we show the contributions of different activity
types to the infection dynamics as predicted by the model. We show how most activity
types generate over time fairly constant contributions to the reinfection rate R, and in
consequence it is structurally more stable to report reductions of R caused by
interventions as an additive than a multiplicative term as is usually done (e.g. [12]).
The model also explains why there are decreasing marginal returns to stay-at-home
interventions [13]. Finally, the model makes a prediction concerning the magnitude of
the difference between summer and winter, caused by moving activities indoors during
winter.
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Related work

Location information from mobile device data There are two general methods
to obtain location information from mobile phone data (cf. [14]):

• Network-based means that the network operator has some knowledge about the
location of a switched-on mobile device. There are several techniques, which
depend on the technical equipment of the network infrastructure, and in part also
on corresponding infrastructure on the mobile devices. In general, the operator
keeps the so-called call detail records (CDRs), which state, for each data or voice
call, the time and the cell tower ID. Often, operators also keep cell tower
handovers even when no calls are made. More spatial precision can be obtained by
sending corresponding requests to the mobile device, but this is not done by
default and thus in general not available.

The network-based approach can keep trajectories; in principle from switching on
to switching off of the mobile device; in practice often limited by privacy laws, in
Germany for example to 8 hours after which the temporary ID of a cell phone
needs to be changed without connecting it to the previous ID.

• Device-based means that the mobile device itself determines its position and
sends it to the data collector. A typical example are map applications, which
collect and send GPS positions while the application is running. Other examples
are weather apps, or in general all apps which contain location-providing libraries
in their code. Many mobile devices inform the user about the fact that location
information is given away, but some do not. A special case are apps that are
specifically about collecting movement data, such as [15].

The device-based approach is spatially more precise. It is, on the other hand,
limited to those devices that use the particular app or library. In consequence,
only a small subset of devices sends this data, and only from starting to ending
the particular app.

As a result, the device-based approach is very good for providing crowdedness data,
which is, for example, provided by google for many facilities, and which is also the basis
for google mobility reports [16]. In order to obtain longer trajectories for large
population samples, the network-based approach is better.

Mobile device data can be used in many ways to help with analyzing the dynamics
of an epidemics. Out of the categories described by Grantz et al. [14], the work
described in this paper concentrates on “Capturing epidemiologically-relevant behaviors
with mobile phone data”. Note that there are two separate, but related inputs where we
use mobile device data:

1. To obtain the “regular” movement patterns of our synthetic population.

2. To obtain the reductions of those movement patterns throughout the unfolding of
COVID-19 in Germany.

Daily activity trajectories Using daily activity chains as the basis for transport
modelling is an established approach in the transport modelling community
(e.g. [17–19]). An activity chain is a sequence of activities of a person, where activities
have types such as home, work, shop, etc., starting and ending times, and locations.
There are several ways to generate such activity chains, for example by using
activity-based demand generation models (e.g. [18,20–23]), by taking them from travel
diaries (e.g. [24,25]), by using mobile phone data (e.g. [26]), or by data fusion from open
access data sources (e.g. [27]).
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In the present situation, we needed a technology that was readily available, allowed
uniform rollout at least in Germany, and that would allow to be updated by changes in
the mobility behavior during the unfolding of the COVID epidemics. For that reason,
we used an established process that generates activity chains mostly from mobile phone
data [26]. The process is described in more detail in S1 Text. The outcome of the
process are activity chains, encoded as events (cf. Fig. 1), for as many synthetic persons
as Germany has inhabitants. Since the activity chains stem from transport modelling,
they also contain knowledge about trips between activities, importantly trips by public
transport, and in consequence also contain, for each synthetic person, events when they
enter or leave certain public transit vehicles.

ActivityEndEvent

PersonDepartureEvent

VehicleEntersTrafficEvent
(old: Wait2LinkEvent)

LinkLeaveEvent LinkEnterEvent LinkLeaveEvent LinkEnterEvent

ActivityStartEvent

PersonArrivalEvent

PersonLeavesVehicleEventPersonEntersVehicleEvent

VehicleLeavesTrafficEvent

ActivityEndEvent

PersonDepartureEvent

PersonEntersVehicleEvent

ActivityStartEvent

PersonArrivalEvent

PersonArrivalEvent
ActivityStartEvent (ptInteraction)
ActivityEndEvent
PersonDepartureEvent

PersonLeavesVehicleEvent

PersonDepartureEvent
ActivityEndEvent

ActivityStartEvent (ptInteraction)
PersonArrivalEvent

Fig 1. TOP: Events for travel by individual vehicle. BOTTOM: Events for travel by
public transport. Source: [1].

Using mobile device data to observe changes of mobility behavior during
COVID-19 There are many studies that look at how mobility has changed during
the unfolding of the COVID pandemic.

Apple [28] and Google [16] both publish mobility data based on usage data from
their map services. The Apple data shows for different countries and cities how the use
of different transport modes has changed over time. Different from Apple, Google
publishes mobility data with a focus on activity participation per activity type. This
makes it possible to evaluate how the population has reacted to restrictions (e.g. to
what extent leisure or work activities were reduced).

Warren et al. [29] use mobile device location data to measure distances travelled by

February 27, 2021 4/40

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252583doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.27.21252583
http://creativecommons.org/licenses/by/4.0/


the population in the investigated period from January 2020 until March 2020. Their
analyses show that for several U.S. states and counties, significant reductions in
mobility can be detected, especially from mid-March onward.

Pullano et al. [30] use travel flow data derived from mobile phone data from France
to evaluate the impact of a lockdown which was implemented in France in mid March.
One result of their study is that on a nationwide level, trips were reduced by about 65%.

Bonaccorsi et al. [31] use Italian mobility data to analyse how mobility is linked to
economical parameters. They find that mobility was reduced stronger during the
lockdown for cities with a low income per person and that financial help from the
government is needed to prevent an increase in poverty.

Eisenmann et al. [32] use a representative travel survey in Germany to find out
whether the pandemic has influenced transport mode choice. Their results show that
use of individual modes like car have increased during the lockdown in April whereas
the use of public transport has declined.

Axhausen et al. [33] conduct a study to record mobility behavior using a smartphone
app to track the impact of various measures during the pandemic. Their regularly
published reports include, for example, information on how miles traveled by mode of
transportation change over time, how trip purpose changes, or how trip durations
change.

From reductions of mobility behavior to reductions of infections Describing
mobility changes “during Corona” is, however, not our primary focus; rather, we are
interested in how the infection dynamics can be better understood and possibly
predicted with the help of mobility and other data.

A possible approach to achieve this is data mining; for example, Badr et al. [34]
correlate a mobility ratio MR with a COVID-19 growth ratio GR. They find a strong
correlation, as may be expected. However, the correlation coefficient between MR and
GR changes over time (see Fig. 3 of their paper), implying that the dynamics is more
complex than what can be captured by that correlation.

Fritz and Kauermann [35] use anonymized Facebook movement data to investigate
the relation between COVID infections and movements; they find, together with other
effects, that both reduced mobility and reduced diversity in visits reduces infection
numbers. Again, they allow separate coefficients for each week, which is different from
what we are aiming for.

Jia et al. [36] and Xiong et al. [37] look at how long distance travel influences the
disease import; they find that a high inflow from areas with high incidences is positively
correlated with high infection numbers. They do not, however, look at disease spread
within the urban fabric, driven by daily movement patterns.

Lau et al. [38] fit a spatio-temporal transmission process model, based on [39], to
individual infection surveillance data. The model uses, between other elements, an
exponential distribution for an infection to jump to a new location; the mean distance
of that distribution is taken from Facebook mobility data, reduced accordingly after the
stay-at-home order is introduced, and in consequence reducing infections. The model
does not include different infection contexts, and is in general in its present form more
suitable for rural contexts, where spatial effects play a larger role than in urban
contexts.

Fairly close to our work are Chang et al. [40]. They first construct, based on mobile
phone data, a mobility network between census block groups and points of interest based
on mobile phone data, and then use that model to investigate reopening strategies. The
paper does not state it explicitly, but the data presumably comes from the device-based
approach. In consequence, they have a very detailed resolution of the facilities (they
differentiate, e.g., between full-service restaurants, limited-service restaurants, and
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cafes/snack bars), but on the other hand they do not simulate individual synthetic
persons. We will come back to similarities and differences in our discussion.

Person-centric epidemiological modelling The general dynamics of virus
spreading is captured by compartmental models, most famously the so-called SIR model,
with S = susceptible, I = infected/infectious, and R = recovered [41, 42]. Every time a
susceptible and an infectious person meet, there is a probability that the susceptible
person becomes infected. Some time after the infection, the person typically recovers.
Variants include, e.g., an exposed (but not yet infectious) compartment between S and I.

Instead of running these models with compartments, one can run them on a
graph [43–47]. Persons are represented as vertices, connections between persons are
denoted as edges. The random interactions that are implied by the compartmental
models are then replaced by interactions with graph neighbors.

In reality, these interactions change from day to day; in particular, possible
superspreading events like weddings or other large gatherings cannot be encoded in a
static graph. For this, temporal networks have been investigated ( [47], section VIII).

Finally, a “different framework emerges if we consider nodes as entities where
multiple individuals or particles can be located and eventually wander by moving along
the links connecting the nodes” [47]. When COVID-19 took hold in Europe, a model of
this type by Imperial College [48,49] had a large impact on policy in the UK. Other
examples of this approach are by the Virginia Biotechnology Institute [48, 50, 51] and by
the Center for Statistics and Quantitative Infectious Diseases in Seattle [48,52].
Examples for similar approaches on the global or regional level are [43,53–55]. Groups
that started more recently include [56] and [57].

Aleta et al. [58] construct an agent-based model, similar to ours. Their data derives
from the device-based approach, as explained above, from persons specifically recruited
to collect their long-term trajectories. In consequence, they have long trajectories, with
high spatial precision, but for only 2% of the population (which is still an impressive
sample). We come back to this in our discussion.

A special case is by Kucharski et al. [59], who use a pre-existing dataset with
recorded social contacts for 40 162 participants. This is close to our approach in that the
persons who encounter each other for how long and in which context are microscopically
specified. Differences include that it is not a model for the full population of a region,
and the study does not trace behavioral changes throughout the pandemic.

Person-centric epidemiological models derived from transport simulations
Smieszek et al. [60, 61] and Hackl and Dubernet [62] constructed epidemiological models
on top of pre-existing transport simulations; these are the main starting point for us.

Najmi et al. [63] start from a person-centric transportation planning model for
Sydney, and add a disease transmission model that computes possible infections based
on co-locations during the simulated day. The approach is similar to ours, but does not
use mobile phone data to track the actual mobility behavior. They also do not use an
infection model that depends on the spatial situation of the activity type.

The works by Manout and Ciari [64, 65], for Montreal, and by Bossert et al. [66], for
South Africa, are based on an earlier version of the model used in the present paper.

Except for Chang et al. [40], we have not found other studies that use mobile phone
data both to generate the base mobility and to adjust the mobility throughout the
unfolding of the epidemics.
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Model details

Important sub-models of agent-based epidemics models are: contact model, infection
model, and disease progression model. These are described in more detail in the
following sections.

Mobility model and resulting contact model

As stated, we take the synthetic persons and their movements from transport modelling,
cf. Fig. 1. For the present study, the data is generated by a synthetic method developed
by Senozon, detailed in Sec. S1 Text. We have used and are using the same data for
other projects [67–70]. From these activity chains, we extract how much time people
spend with other people at activities or in (public transport) vehicles. That is, infection
opportunities are directly taken from the input data. Details are provided in Sec. S2
Text.

Fig 2. Change in activity participation compared to the baseline for normal workdays.
All out-of-home activities are combined into one number. (*) denotes the first day of
closures of schools, clubs, and bars; and (#) the first day of the so-called contact ban
which came together with closures of all restaurants and non-essential stores.

Importantly, we also take the reductions of activity participation over time from
mobility data. The method is the same as for the generation of the activity patterns but
stopped early, cf. Sec. S1 Text. Fig. 2 shows, in blue, the percent reduction of all
out-of-home activities since 2020-03-01; weekly averages of these data are used as input
to the model. Sec. Reductions of activity participation in the appendix provides details.

Infection model

Once two persons are identified to have contact, and one of them is contagious and the
other is susceptible, there is a probability of an infection. For this, we use the
mechanical model by Smieszek [60,71]: Infected persons generate a “viral load” that
they exhale, cough or sneeze into the environment, and people close by are exposed.
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Overall, the probability for person n to become infected by this process in a time step t
is described as

p(infect|contact) = 1− exp

(
−Θ

∑
m

shm,t · cinm,t · inn,t · τnm,t

)
(1)

where m is a sum over all other persons, sh is the shedding rate (∼ microbial load), ci
the contact intensity, in the intake (reduced, e.g., by a mask), τ the duration of
interaction between the two individuals, and Θ a calibration parameter.

For small values of the exponent, one can approximate Eq. (1) as

p(infect|contact) ≈ Θ · sh · ci · in · τ . (2)

We do not use this approximation in our computer implementation, but it helps
understanding the following arguments.

All parameters can be given in arbitrary units as long as they are always the same
since the units are absorbed by Θ.

Contact intensities For SARS-CoV-2, it is plausible to assume that a large share of
the virus material is shed as aerosol [4]. In consequence, the first relevant term to
compute the viral concentration in the air is the shedding rate, sh.

For such aerosols, it is plausible to assume that they mix quickly into the room,
leading to the same uniform concentration everywhere [72]. Evidently, that
concentration is indirectly proportional to room size: if the room is twice as large, the
resulting concentration is half as large.

Next, air exchange plays a role [72]. One could, for example, assume that the
windows are opened once per hour, and all of the air is replaced with outside air. This
would correspond to an air exchange rate of 1/h. If one assumes a constant rate of virus
emission, there would be a linear increase of concentration up to the opening of the
window, after which (in a theoretical model) the virus concentration in the air would
quickly drop to zero. The average virus concentration over this process would be half as
much as the maximum concentration just before window opening. In consequence, the
resulting average concentration is indirectly proportional to the air exchange rate: If the
air is exchanged twice as often, the resulting average virus concentration is half as large.
This also holds for continuous air exchange, e.g. by mechanical means.

All of the above together replaces Eq. 2 by

p(infect|contact) ≈ Θ · sh · in
rs · ae

· τ , (3)

where rs is the size of the room, and ae is the air exchange rate. That is, it sets

ci =
1

rs · ae
. (4)

Again, the physical units are absorbed into Θ; note, however, that the air exchange rate
ae is defined as exchanging air for the full room, and not in, say, cubic meters.

Estimation of room sizes As stated above, our data resolves down to the level of
“facilities”. These correspond roughly to buildings. In consequence, such a facility can be
anything from a single family home to a large office building to a sports arena.

Since our simulation tracks when persons are at facilities, we can, for each facility,
obtain the maximum number of persons at that facility, NpersonsAtFacility

max , over the day.
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In addition, one can obtain typical floor space per person, fs, from regulatory norms
and other sources (see Tab. 1). This leads to

facilityF loorSpace = NpersonsAtFacility
max · fs . (5)

Since we divide all facilities by N spacesPerFacility (cf. Sec. Handling of large facilities in
the appendix), this leads for the room size to

rs = RoomCapacity · fs · h (6)

where h is the room height, and

RoomCapacity :=
NpersonsAtFacility

max

N spacesPerFacility
; (7)

note that N spacesPerFacility = 1 for home activities (cf. Sec. Handling of large facilities in
the appendix).

Air exchange Overall, the above results in

ci =
1

RoomCapacity · fs · h · ae
=:

1

RoomCapacity · v
. (8)

v = fs · h · ae is the air volume flow per person at capacity, which is also used by other
models as the decisive quantity to decide about the relatively safety of rooms [5].

RoomCapacity describes the size of the room; a room for a certain function (e.g.
“work”) typically comes with a certain v which is per person; this is then multiplied by
RoomCapacity which gives the air exchange volume flow for the room. Since these
equations calculate the conditional infection probability given that there is one
infectious person in the room, it is clear that a larger room under these conditions
results in a smaller infection probability.

However, if the room is twice as large, then there will presumably also be twice as
many persons in it, doubling our own risk, and thus in the average cancelling out the
effect of the larger room size. This second effect, however, is computed directly by our
contact model (Sec. Mobility model and resulting contact model above), and thus does
not have to be included into the conditional infection probability. This has the
additional advantage that if a person is in large container outside its peak usage, the
model will calculate a much reduced infection probability. Examples for this are public
transport vehicles, premises for large events, or restaurants.

Table 1 gives concrete values that the model presented in this paper uses.
Kriegel [73] currently recommends an air volume flow per person of at least 75 m3/h to
suppress most COVID infections. This corresponds well with the values of Table 1,
which state that average facilities, when operated at full occupancy, are in general not
“safe”.

Children Current research implies that the susceptibility and infectivity are reduced
for children compared to adults. We model this by including the susceptibility and
infectivity into Eq. (1). For adults both parameters are set to one. For people below the
age of twenty the infectivity is reduced to 0.85 and the susceptibility to 0.45 [6, 7]. Note
that this does not mean that the infection probability for children is necessarily lower
than for adults because children are more likely to perform activities with a high
contact intensity (= low air volume flow per person), as shown in Table 1.
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Table 1. Air volume flows per person used in the model. The floor area per person
and the air exchange rate come from building manuals or similar standards. The share
of old buildings/vehicles is an estimate. Universities are assumed to have twice as much
space per student as schools. Shop, errands, and business are assumed to follow the
same characteristics as work. The average of the volume flow per person is computed as
1/v = 〈1/v〉.a

air ex- air ex- volume volume resulting
activity area per change change flow per flow per share old volume flow

type person rate low rate high pers. low pers. high buildings per pers.
[m2] [1/h] [1/h] [m3/hr/p] [m3/hr/p] /vehicles [m3/hr/p]

home [74] 22 0.5 0.5 33 33 33
schools, day care [75] 2 0.5 0.5 6 6 100% 3

universities 4 0.5 0.5 12 12 100% 6
public transport 0.33 2.0 10.0 1.98 9.90 50% 3.3

leisure [76] 1.25 0.5 10.0 1.88 37.50 50% 3.57
shop 10 0.5 1.5 15 45 10% 37.5

work [77–79] 10 0.5 1.5 15 45 50% 22.5
errands 10 0.5 1.5 15 45 50% 22.5

business 10 0.5 1.5 15 45 50% 22.5

aAveraging the inverse of the volume flows is the correct approach since the contact intensities need
to be averaged. Assume, say that with probability 1/2 one enters either a facility with v = 1 or with
v = ∞. Then the resulting probability to become infected is half of that if entering the room with v = 1
with probability one. This corresponds to v = 2, meaning that the inverse of the v need to be averaged.

Disease progression model

The disease progression model is taken from the literature [80–85] (also see [86]). The
model has states exposed, infectious, showing symptoms, seriously sick(= should be in
hospital), critical (= needs intensive care), and recovered. The durations from one state
to the next follow log-normal distributions; see Fig. 3 (LEFT) for details. We use
similar age-dependent transition probabilities as [49], shown in Fig. 3 (RIGHT).

Infecting another person is possible during infectious, and while showing symptoms,
but no longer than 4 days after becoming infectious. This models that persons are
mostly infectious relatively early through the disease [81], while in later stages the
infection may move to the lung [82], which makes it worse for the infected person, but
seems to make it less infectious to other persons.

Simulation runs

This paper presents simulation results for the metropolitan area of Berlin in Germany,
with approx. 5 million people. A typical simulation run looks as follows:

1. One or more exposed persons are introduced into the population.

2. At some point, exposed persons become infectious. From then on, every time they
spend time together with some other person in a vehicle or at some activity,
Eq. (1) is used to calculate the probability that the other person, if susceptible,
can become infected (= exposed). If infection happens, the newly infected person
will follow the same progression.

3. Infectious persons eventually move on to other states, as described in Fig. 3.

The model runs many days, until no more infections occur.
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infectious

median = 3.5 days 
sd = 3.5 days

exposed

recoveredshowing 
symptoms

median = 2 days 
sd = 2 days

median = 4 days 
sd = 4 days

recoveredseriously sick

critical recovered

seriously sick recovered

median = 8 days 
sd = 8 days

median = 4 days 
sd = 4 days

median = 14 days 
sd = 14 days

median = 1 day 
sd = 1 day

median = 21 days 
sd = 21 days

median = 7 days 
sd = 7 days

sd = standard deviation

symptomatic hospitalised
cases case

Age-group requiring requiring
hospitalisation critical care

0 to 9 0.05% 5.0%
10 to 19 0.15% 5.0%
20 to 29 0.6% 5.0%
30 to 39 1.6% 5.0%
40 to 49 2.45% 6.3%
50 to 59 5.1% 12.2%
60 to 69 8.3% 27.4%
70 to 79 12.15% 43.2%

80+ 13.65% 70.9%

Fig 3. LEFT: State transitions [80–85]. RIGHT: Age-dependent transition probabilities
from symptomatic to seriously sick (= requiring hospitalisation), and from seriously sick
to critical (= requiring breathing support or intensive care). Source: [49], except that
the numbers in the second column are divided by 2 (discussed in Sec. Under-reporting).

Methods and results

Calibration The calibration procedure undertaken for the present paper is described
in Sec. Appendix: Calibration. Calibration is performed with first priority against the
time series of the number of hospital patients in Berlin, and with second priority against
the COVID case numbers in Berlin. The case numbers are only used with second
priority since the screening procedure has been changed multiple times, which means
that the resulting time series is not homogeneous and thus not useful for model
calibration.

The calibration includes the following elements:

1. Calibration of the basic doubling time without reduction of activity participation

2. Integration of spring disease import

3. Calibration of the consequences of reduced activity participation

4. Calibration of an indoors/outdoors effect for leisure activities depending on the
temperature

5. Integration of contact tracing, masks, and summer disease import

All calibrations concern Θ (cf. Eq. 1); item 4 also involves defining threshold
temperatures at which activities are moved outdoors at the end of the winter, and
indoors at the end of the summer. All other aspects are data driven.

The final model is shown in Fig. 4 (top), where the blue line traces the number of
new cases with state showingSymptoms from our simulation. Fig. 4 (bottom) shows the
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Fig 4. Final model. TOP: case numbers; BOTTOM: hospital numbers.
https://covid-sim.info/2021-02-09/paperAggr?run=6_withSummerImport&

withTracing=yes&withMasks=yes&thetaFactor=0.8&withMasksAndTracing=yes

cases in need of hospital care and those in need of ICU care from our simulation
compared to real data. As stated, we find fitting to the hospital numbers more
important; fully fitting to the case numbers at the same time is not possible.

In terms of calibration, the initial growth is, within limits, insensitive against
changes of Θ, since it is dominated by the disease import (cf. Sec. Appendix:
Calibration). This can be explained by the fact that the exponential growth was
running ahead in other areas, and in consequence the share of infected persons from
those areas also grew exponentially. Only after travel was stopped, disease import also
stopped, and the dynamics in Berlin was dominated by internal processes. What is
sensitive against Θ is the downward slope around April. In consequence, we adjust Θ
such that the downward slope in the logarithmic plot is reproduced, given the activity
reductions and mask compliance provided by our data. The result is also compared
against hospital numbers (Fig. 4 bottom), which confirms our calibration.

The case numbers over the summer contain one large outbreak in a religious
community, which the model does not contain. Otherwise, over the summer, the
reinfection rate R was below one (Fig. 7).
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Fig 5. Outdoors fraction for activities of type leisure, depending on the temperature of
each day.

Indoors/outdoors and second wave We include into our model that up to 100%
of leisure activities are undertaken outdoors during summer, while that share reduces to
0% during winter. When an activity occurs outdoors, the otherwise identical
computation of the infection probability is divided by 10. The model takes the actual
temperatures as input; if the daily maximum temperature is larger than T ∗ + 5C, then
all activities that can happen outdoors are outdoors; if the daily maximum temperature
is smaller than T ∗ − 5C, then all activities happen indoors; in between, probabilities are
linearly interpolated. We use T ∗ = 17.5C in spring, linearly increasing to T ∗ = 25C in
fall. Having different T ∗ in spring vs fall is plausible, and yields a far more plausible
infection dynamics than keeping them the same. More details are given in
Sec. Outdoors vs. indoors season in the appendix.

The second wave, as one can see in Fig. 4, already started in July, in our simulations
pushed first by disease imports from people returning from summer travel (cf. Fig. 10),
and then by the school openings in the second week of August (cf., e.g., Fig. 8).
However, our simulations say that, without the change in outdoor fractions, contact
tracing would have been able to keep the dynamics under control after the returns from
summer travel stopped. Also, models where the second wave is triggered by summer
disease import plus school openings alone all result in a second wave that is “too early”,
and also “not steep enough” when compared with data, in particular with hospital
numbers. Weather is the only effect that we have identified so far that occurs at the
right time.

Infections per activity type Evidently, in our microscopic models we can track
how many infections happen at which activity type. Fig. 6 shows, on top, the absolute
numbers of infections per activity type for the simulation, and below the share of
infections per activity type over time. To obtain these numbers, we evaluate what
activity the infected person is performing at the time of infection and date that to the
date of infection.

Initially, all activity types play a role. After the closure of the universities, schools,
and day care in March, both their absolute numbers and their shares go to zero. At the
same time, the infections share of work (gray) in April and May reflects that persons
were drifting back to normal activity patterns (cf. Fig. 2). Leisure (green) would have
shown the same trend, but that was counter-acted by the increasing shift of activities to
outdoors. In the bottom plot, the purple line shows how the share of infections in public
transit decreases significantly near the end of April because of increased wearing of
masks. (Recall that we use observed mask compliance.) In July we see how day care
(blue) picks up, because it was re-opened. Schools re-open in the second week of August,
and pick up accordingly (brown). Also, two weeks of school vacation in October are
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Fig 6. TOP: Infections per activity type. Note logarithmic scale. BOTTOM: Share of
infections per activity type. The values are averaged over the same 10 runs as for the
other figures, and in addition aggregated into weekly bins. One can see, for example,
the return to school near the beginning of August, and the fall vacations in October.

clearly reflected in the brown curve. From September on we then see a strong increase
of the infections share of leisure activities – corresponding to moving leisure activities
from outdoors to indoors as explained earlier.

Reinfections Since our method is person-centric, we can, for each infected person n,
count the number of its reinfections, Rn. When averaging over multiple persons, one
needs to make a decision to which date Rn is assigned. We use the date when n turned
contagious, and in consequence

R(t) =
∑

n∈C(t)

Rn ,

where C(t) refers to all persons who turned contagious on day t. An issue with this
approach is that the consequences of interventions become visible in R(t) before the
interventions actually start – since the reinfections that are suppressed happen later
than t. This is also the reason why we use the date when turning contagious and not
the date when they got infected, since that would increase that distance even more.
Fig. 7 shows the resulting values, with R(t) much larger than one in the initial phase,
then lower than one until the end of summer, and then increasing to above one in fall.
We do not offer a comparison with the official R values since they have the same issues
as the official case numbers.

Reinfections per activity type More insightful than the number or share of
infections, as discussed in Sec. Infections per activity type below, are the average
reinfections in each activity type. The method counts for each infected person the
number of persons they reinfect at each activity context. As in Sec. Reinfections above,
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Fig 7. Reinfection rate R(t) for the duration of the simulation. As explained in the
text, we explicitly count the reinfections per agent, and then average them over all
agents that turned contagious on a given day.

Fig 8. Reinfections per activity type.

the numbers are dated back to the date when the person became contagious, and then
averaged over all those persons.

One sees, in Fig. 8, that the reinfections at home remain roughly constant – a person
who gets infected in any way in the average reinfects about 0.35 persons at home. Work
is related to the mobility data – if less time is spent out-of-home, then in the model less
time is spent at work, leading to fewer infections. Schools were closed in the middle of
March, and not reopened until the second week of August. Also, there is a vacation
during the second and third week of October. Day care according to the model has little
effect. Day care was already re-opened partially in June, and fully in July. The
reinfections at leisure are strongly driven by the weather: If it is warm, the model
assumes that most of them take place outdoors, where they contribute little to the
infection dynamics. In consequence, this effect plays an important role in spring, where
the warmer temperature played as much a role as the reduction of the out-of-home
activites. One also clearly sees the strong growth of the leisure reinfections in fall, which
according to these simulations is driving the second wave in Berlin. Public transport is
strongly visible in March, until the obligation to wear masks was introduced. All other
infection contexts, e.g. errands or business activities, are combined in the category
“other”.

Reductions of R per intervention Other papers, e.g. [12, 87], report, for various
interventions, corresponding percent reductions of R. Our model clarifies that it is
structurally more robust to report the additive reduction of the reinfections by a certain
intervention. For example, according to our model closing schools removes the school
reinfections from the dynamics, and in consequence reduces R by about 0.15. If R is 1
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when the intervention is introduced, this amounts to 15%; if R is 2, then this amounts
to 7.5%.

Table 2. Contributions to R by activity type and intervention according to our model.

contribution to R
home 0.44
. . . with cloth / N95 masks 0.20 / 0.02
work 0.17
. . . @ 75% / 50% 0.10 / 0.04
. . . with cloth / N95 masks during work 0.06 / 0.01
. . . @ 50% with N95 masks during work < 0.01
schools 0.15
. . . @ 75% / 50% 0.07 / 0.02
. . . with cloth / N95 masks during classes 0.05 / < 0.01
. . . with N95 masks during classes and 50% attendance < 0.01
day care 0.02
. . . @ 75% / 50% 0.01 / < 0.01
. . . with cloth / N95 masks 0.01 / < 0.01
universities 0.23
. . . @ 75% / 50% 0.11 / 0.03
. . . with cloth / N95 masks 0.06 / < 0.01
retail and errands 0.09
. . . @ 75% / 50% 0.06 / 0.03
. . . with cloth / N95 masks 0.03 / 0.01
leisure (winter) 1.04
. . . @ 75% / 50% 0.52 / 0.21
. . . with cloth / N95 masks 0.38 / 0.03
leisure (summer) 0.2
public transport 0.12
. . . @ 75% / 50% 0.06 / 0.03
. . . with cloth / N95 masks 0.04 / < 0.01

Tab. 2 shows, based on simulations as explained in the previous section, the
contributions to R of the different activity types. Adding up the boldface numbers leads
to R = 2.26, i.e. a strongly super-critical situation. In contrast, the 2020 Germany
summer regime corresponds to closed universities, schools and day care, and wearing
masks in retail. Together with the leisure summer number this leads to R = 0.88, i.e.
makes the situation sub-critical.

It has been pointed out by other studies that the reinfections at home play an
important role and reduce the remaining “space” one has available for infections outside
home [88]. Reinfections at home can be reduced by moving persons showing symptoms,
and more radically persons identified as contacts by contact tracing, into separate
facilities, sometimes called quarantine hotels.

One also notices that all infection contexts can be strongly reduced by wearing
masks – this (evidently) even holds for leisure. Clearly, they would need to be worn
during the activities, and not just during access and egress. Wearing masks during class
at school has hesitantly been adopted in Berlin during November; wearing masks during
work, in particular in office buildings, has never been pursued seriously in Germany and
is still not obligatory if occupants have at least 10 m2 available per person – which is
the value with which our simulations run and which generate the numbers of Table 2.

Evidently, a tricky context is leisure. According to our simulations, leisure alone, in
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conjunction with home, would be sufficient to keep R above one during winter, and thus
needs to be suppressed accordingly. Keeping other activity contexts open without masks
implies that leisure needs to be suppressed even further if R < 1 is to be achieved.

Conversely, during summer achieving an R < 1 is relatively easy. This explains why
there were few problems during summer in Germany (and most other European
countries).

Decreasing marginal effect of interventions Our approach clarifies why the
marginal effect of stay-at-home interventions decreases [13]: Assume, for example, that
each morning each school child throws a coin and goes to school only when it shows
heads; this means that school participation is reduced by 50%. In consequence, if there
is an infectious person at school, only half as many other persons have a chance to get
infected. (Note that this assumes that they use the same classrooms as before, at half
the density.) However, the probability that an undetected infectious person goes to
school is also reduced to 50%. Multiplying these two probabilities means that only
50% · 50% = 25% of the infections happen in this case. More generally, reductions of
activity participation have quadratic effect; a reduction of the participation to α leads
to a reduction of infections to α2. Evidently, this means that 1− 0.75 · 0.75 = 44% of
the effect is obtained with the first 25% of the intervention, 1− 0.5 · 0.5 = 75% of the
effect are obtained with the next 50% of the intervention, and the remaining 25% of the
effect need the remaining 50% of the stay-at-home intervention.

In terms of the management of COVID-19, this implies that it is far better to
include each activity type/sector of the economy to some extent, rather than shutting
down some sectors completely while leaving some other sectors completely open.

Intuition for these results In an older version of the model [89], we had all contact
intensities set to one. The contributions of each activity type to the infection dynamics
then in first order corresponded to the average weekly time consumption in the
respective activity. For example, averaged over the week including the weekend, school
consumes about 5 hours per day for persons going to school. However, since in Berlin
only about 10% of the population are school children,1 the average time consumption
for the school activity is only 0.5 hours per day when taken across the whole population.
In contrast, there are more persons going to work than to school, thus increasing the
weight of work in the infection dynamics. The by far largest weight, however, comes
from the leisure activities, which are not necessarily more hours per week for each
individual person, but where all persons contribute to this type of time consumption. In
consequence, restricting leisure activities had a large effect in that model.

In the present model, the time consumptions are now divided by the air volume
flows per person in those activity types, cf. Tab. 1. In consequence, leisure, which
already had a large share before, is now divided by a small air volume flow per person,
and in consequence now gets even more weight. Work, despite occupying similar
amounts of time, is weighted down because of the division by the much larger air
volume flow per person. On the other end of the scale, public transport has, at full
occupancy, a small air volume flow per person, but the times spent in public transport
are considerably smaller than, say, at work. Also, persons in public transport are
required to wear masks, while at work they are not.

A complicated case are schools and day care: They occupy large amounts of time,
and have a small air volume flow per person, both somewhat similar to leisure. In
consequence, the re-opening of day care in July and of the schools in August should
have had strong consequences in the infection numbers. We took the observation that

1https://www.statistik-berlin-brandenburg.de/BasisZeitreiheGrafik/Bas-Schulen.asp?

Ptyp=300&Sageb=21001&creg=BBB&anzwer=5
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that did not happen as confirmation that their larger-than-average contact intensity is
compensated for by a smaller-than-average infectivity and susceptibility. Clearly, this is
specific to (our current understanding of) COVID-19.

For other diseases, for example influenza, all of the above may need to be adapted.
For example, children may have a larger infectivity/susceptibility than adults, which
then multiplied with their large contact intensity would lead to a large contribution to
the infection dynamics. In consequence, these sub-models need to be understood and
re-calibrated for each individual communicable disease.

Discussion

Comparison to compartmental models Arguably, compartmental models are the
mainstay of epidemiological modelling. Our approach, in contrast, follows individual
synthetic persons. These individual persons can be enriched by person-centric attributes
such as age or individual risk factors. Disease progression is individual, taking into
account these demographic and other person-centric attributes. Similar to
compartmental models, the base reinfection rate and the starting date need to be
calibrated from case numbers (for the present study, the latter was replaced by
data-driven disease import). However, both the spatial and the social interactions in our
model come directly from data. Also, behavioral reductions in activity participation
come directly from data. Mechanical aspects such as the wearing of masks by certain
persons and/or at certain activity types can be integrated very simply into the model,
by reducing virus shedding, virus intake, or both. Travel in public transport is already
integrated. Organizational suppression approaches, such as contact tracing, can be
simulated mechanically, thus extracting information about the allowed delays between
symptom onset and reaching contacts, the failure rate, etc.

We were able to bring this up quickly: Coding of the infection code was started at
the end of Feb/2020; our first preprint is from 20/Mar/2020 [90]; our first report to the
government is from 8/Apr/2020 [10]; we have reported to the government regularly
since then.2 Evidently, we were drawing from our experience and expertise with
person-centric travel models. Still, it means that given the right experience and data
availability, the method is not overly heavyweight, and then has many advantages over
compartmental models.

The basic behavior of the model is like that of any S(E)IR model, i.e. exponential
growth until a sufficient share of the population is immune, followed by exponential
decline (cf. blue line in Fig. 4). Also the beginning and the speed of the growth are
calibrated in similar ways. In typical S(E)IR models, however, interventions such as
reductions in out-of-home activity participation, masks, or contact tracing, need to be
parametrized into parameter changes of the S(E)IR model, most notably the infection
rate [91–94]; in our model, such interventions are included directly into the
corresponding processes.

A model that is at the border between compartmental and agent-based is by Chang
et al. [40]. Important differences to our model include:

• Chang et al. take their movement model directly from mobile phone data. We, in
contrast, re-use a pre-existing, activity-based model from transportation planning.
This may be an advantage in regions where such a model already exists, and in
particular so if the differentiated data that Chang et al. have is not available (as
seems to be the case in Germany).

• We can attach individual attributes to each agent. In the present paper, this is
used to model age dependence, a future study will contain the virus mutations,

2Cf. https://depositonce.tu-berlin.de/simple-search?query=modus-covid
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but it could also be used to include, say, pre-existing conditions. Compartmental
models can only achieve this by introducing partial densities in each department.
They will need as many partial densities as there are attribute combinations, i.e.
NageGroups ·Nmutations for the above situation. Since this is also multiplied with
the number of locations, such models eventually need (much) more memory than
when the information is attached directly to the individual agents.

• Both models are similar in that the conditional infection probability given contact
is indirectly proportional to the floor area, for us stated in Eq. (3), and for Chang
et al. stated in Eq. (8) in the appendix. We take floor area from maximum
occupancy (obtained from the person trajectories) plus the typical surface area per
person for each activity type. Chang et al, in contrast, take the floor area directly
from their POI data. However, they do not explicitly consider workplaces or
schools, and rather replace this by a parameterized “localized infection”; here, our
model is more specific and thus more conducive to the consideration of explicit
measures such as the introduction of masks, reduced activity participation, etc.

Our model also takes typical air exchange rates into account.

• Our model, since it comes from transport planning, includes encounters in vehicles
of public transport.

• Another difference, which, however, has nothing to do with the methodology, is
that we calibrate and validate against hospital cases. This provides, at least in
Germany, a more stable basis than case numbers, since in Germany the sampling
strategy for PCR testing has changed several times, thus making the case numbers
problematic as a time series.

Comparison to other agent-based models driven by mobile phone data As
stated earlier, an approach similar to ours is by Aleta et al. [58]. There are the following
differences:

• Aleta at al, similar to Chang et al, take their movement model directly from the
mobile phone data. We, in contrast, use a pre-existing model from transportation
planning. This is useful in particular in places where such a model already exists.

• Importantly, we also use the reduction-of-mobility data as input to our model.

• Aleta at al. use a model of 2% of the real population (85,000 synthetic persons)
while ours consists 25% (1.25 mio). With models sampled at fraction α, one needs
to make a decision if either one synthetic person stands for 1/α real persons, or if
one models a fraction of the real population. We found the second path more
intuitive. However, one needs to make sure that household sizes, group sizes at
offices, etc., remain realistic. For household sizes, this can be achieved by
synthetically constructing them, as both Aleta et al. and we do in some way. For
all other locations, one needs to aggregate 1/α locations of the same type into one
location in order to have realistic contact probabilities. Aleta at al. state that
because of the sampled population, “colocation events between individuals are still
quite sparse”, which points exactly to that issue.

• One issue with small population samples is that this makes the introduction of
different virus strains difficult: One can essentially only introduce them in packets
of 1/α, missing the relatively long early phase where their numbers are still low.
We will report on this in a future paper.
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• In contrast to Aleta et al, we use an infection model constructed from first
principles. This would presumably be easy to change in their model.

• Where we use lognormal distributions, Aleta et al. use exponential distributions
(i.e. rates) to transition from one disease state to the next; we believe that the
literature prefers lognormal distributions. Using exponential distributions will lead
to wider distributions of disease durations, both with shorter and longer durations
from infection to recovery. This also would presumably be easy to change in their
model.

Table 3. Percent reduction of R in other studies. Rounded to integers.

Measure [87] [95] [95] [96] [97]
“CC” “LASSO”

Schools closed 50 16 34 8 5

Some businesses suspended 26
Most businesses suspended 34
Work ban 31

Gatherings limited to ≤ 1000 16
Gatherings limited to ≤ 100 17
Gatherings limited to ≤ 10 28
Mass gathering cancellation (> 50) 27 0
Small gathering cancellation (≤ 50) 17 23
Event ban 23 5
Gathering ban 34
Venue closure 36

Stay-at-home order with exemptions 14
National lockdown 0 8 5 81
Mask-wearing 0∗

Increase availability of person protective
equipment

9 12

∗ not significantly different from zero

Comparison to other “reductions of R” studies Tab. 3 is an attempt to extract
“additional reductions to R” from other studies. One immediately finds two issues: (A)
The categories are not well aligned. For example, “small gathering cancellation” refers
to gatherings with 50 persons or less, while other studies cancel gatherings larger than a
certain number. Again other studies just consider a “gathering ban”, but at the same
time have “event ban” and “venue closure” as separate items. (B) Even where the
categories are well aligned, the resulting numbers vary widely: “schools closed” goes
from 5% to 50%, “national lockdown” goes from 0 to 81%.

In part, this is a consequence of the fact that the interventions are not standardized:
For example, the number of exemptions in what is called a lockdown varied quite a lot
between countries.

Additionally, the transmission mechanisms vary, so even if the concept may be the
same, the execution and thus the effect may be quite different between countries. For
example, our reductions to R caused by school closures come out much lower than most
other values, in particular those of Brauner et al. [87]. We attribute this to the following
two elements: First, the model by Brauner et al. has no initial disease import which is
then brought to a halt. In consequence, their approach has to assign all changes in the
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infection dynamics to the school closures. The school closures in Berlin were, however,
one week later, with Mar/12 (fri) or Mar/15 (mon) as the last day of school; were too
late to explain the infection numbers. Also, Dehning et al. [91] have an additional
change point on Mar/7, corroborating that something has changed before the school
closures. Second, other than both Brauner et al. and Dehning et al., we have the
mobility data of Fig. 2 at our disposal. It is clear that there was considerably more
societal adaptation around the weekend of Mar/13-14 than just keeping children at
home. Brauner et al. themselves write that “the closure of schools ... may have caused
... behaviour changes. We do not distinguish this indirect signalling effect from the
direct effect”. Additionally, in Germany, children staying at home will force their
parents to stay at home, thus forcing them into home office. In consequence, some of
this may not be signalling, but causal secondary effects. In consequence, our model is
more differentiated: What Brauner et al. attribute to the school closures alone is in our
model attributed to a combination of school closures, behavioral changes, and the
reduction of various other out-of-home activities. Thus, all of the values may be correct:
The pure effect of school closures in western countries (with relatively few young people)
may not be larger than 5%, but the measurable consequence for R when governments
closed schools as their first intervention presumably indeed was much larger.

We have checked our relatively large reductions of R for masks multiple times. They
are a consequence of the assumption that N95 masks reduce intake to 2.5%, taken
from [98]. The review article [99] comes up with about 5%, a factor of two larger, but
still displaying a very large reduction. The same paper [99] also shows that “masks”
without a specification of the type has much less of an effect. Finally, there may be the
issue that lay people may not be able to use N95 masks at full efficiency. In
consequence, our results have to be interpreted once more “mechanically”: They are
plausible under the assumption that the fraction of people specified in the model is
indeed able to use N95 masks effectively.

Clearly, data-driven mechanical models such as ours help clarifying the categories
since we can exactly specify what we mean by closing some activity type or wearing a
mask at certain activity types. Also, we can differentiate between the transmission from
political decision to behavioral execution vs. the consequences of the behavioral
execution to the infection dynamics. Finally, we can mechanically include organizational
approaches such as contact tracing.

Under-reporting A known issue with epidemiological data and thus the simulations
that build on it is the issue of under-reporting, i.e. that there are more infections in
reality than are in the data. Looking at Fig. 4, it is clear that our current model
assumes only little under-reporting during August to October. This originally led to
hospital numbers that were too large; since we cannot reduce the number of infections
below the case numbers, this justifies why we reduce simulated hospital numbers by a
factor of 2 as stated in Sec. Calibration. This, in turn, implies that, if we want to get
the spring hospital numbers right, our simulated infection numbers in spring need to be
about a factor of 8 larger than the case numbers. Also note that our simulation includes
non-symptomatic cases, which come on top of the symptomatic cases that we show in
our figures such as Fig. 4; that is, actual under-reporting is even larger. Still, it is
entirely possible that the testing strategy is missing even more cases, in which case the
simulation would need to aim for even larger numbers of infected persons. As long as
the number of sero-positive persons in Germany remains in the single-digit percentage
ranges [100], the predictions made by the simulation are not strongly affected by this
issue. Once the infections start to saturate, i.e. approach herd immunity, this will
become important. Hopefully, by then systematic antibody screenings will be available,
and we will be able to calibrate the model against the case numbers that must have
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been infected in the past. Given that we have the hospital numbers for control, we
expect this to be straightforward.

Contact structures It is well established that different contact structures lead to
different infection dynamics [47,101]. For example, the epidemic threshold, i.e. the
minimal share of persons that need to be susceptible, may be different. For our model,
such elements in principle come from the input data: Besides coming with their
complete contact graph, our synthetic persons have an age, an employment status, and
gender. Thus, in principle, we have the interaction structure at the level of facilities or
public transport vehicles, including people’s attributes, from data. However, as stated,
for privacy reasons the facilities are too large, and in consequence multiple households
or multiple offices are bundled into a single facility. For households we compensate, as
described, by manually splitting them up; as of now we do not, however, control for age
structure in the splitting process. This needs to be improved. For all other activities we
compensate, as also described, by allowing interaction with only 1/N spacesPerFacilityth of
all other persons at the same facility on each given day, but allowing mixing by using
separate random draws for every simulated day, selecting N spacesPerFacility such that the
overall number of contacts (for contact tracing) ends up in a plausible range. This
should be improved as well. However, more of an issue for COVID-19 may be that the
original input data does not contain separate facilities for the elderly; for mobility
modelling, this has so far not been of interest. This implies that the following issues
need to be addressed in the future:

• Clarify which epidemiology-relevant aspects of the input data are too far away
from reality.

• For those aspects that need to be improved, clarify if this could be done at the
level of the original input data generation, or if it should be compensated for at
the level of the modelling.

Concerning the possibly different epidemic threshold, we would argue that for the
present situation this is less of a problem: If only a fraction of the persons in the
simulation was susceptible, or they would be connected via a different contact structure,
the calibration process would compensate by selecting a different Θ in Eq. (1).
Evidently, if we get closer to herd immunity, possibly by vaccination, these aspects
become more important.

Predictions The model is used for predictions. We decided to not add them into the
paper since any prediction we make now would be historical quickly. Our regular reports
to the government, and thus our predictions, all have a DOI, for example [10] or [102].3

Conclusions

We combine a person-centric human mobility model with a mechanical model of
infection and a person-centric disease progression model into an epidemiological
simulation model. Different from other models, we take the movements of the persons,
including the intervening activities where they can interact with other people, directly
from data. For privacy reasons, we rely on a process that takes the original mobile
phone data, extracts statistical properties, and then synthesizes movement trajectories
from the statistical properties; one could use the original mobile phone trajectories
directly if they were available. The model is used to replay the epidemics in Berlin. It is

3Again, see https://depositonce.tu-berlin.de/simple-search?query=modus-covid.
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shown that the second wave in Berlin can be modelled well with an explicit temperature
dependency of the outdoors fraction for leisure activities. The model is then used to
evaluate different intervention strategies, such as closing educational facilities, reducing
other out-of-home activities, wearing masks, or contact tracing, and to determine
differentiated percentage changes of the reinfection number R per intervention.

Appendix: Calibration

Case numbers and hospital numbers in Berlin

The simulation is calibrated against the Berlin case numbers and the Berlin hospital
numbers. COVID-19 is a notifiable disease, and the notifications are collected and
published by the Robert Koch Institute (RKI) [103]. Each record contains at least two
dates: The date when the record reaches the local health department (reporting date),
and the date when symptoms started, called reference date.

In principle, the reference date would be easier to compare with our simulations,
since it corresponds to the onset of our showingSymptoms state. Unfortunately,
however, it is not clear how reliable that date is. The health department becomes aware
of cases once they are tested positively. The positive test result becomes available about
2 days after the probe was taken. The health authorities thus have to connect a positive
test with the person, and query the person about when symptoms started. Self-reported
dates of symptoms onset are presumably rather unreliable, in part because of recall
errors, in part because what a symptom is is not sharply defined. The reliability may be
improved by using expert interviewers, but those may not always be available. In
addition, when tests are taken from pre- or asymptomatic cases, a date of symptoms
onset is not yet available, and for asymptomatic cases never will be. In such cases, the
reporting data is also entered as reference date, which for pre-symptomatic cases is too
early. Finally, many records are reported completely without this reference date. RKI
provides a procedure to impute the missing reference date [104], but has to rely on the
statistical distribution of the cases where a reference date exists, which may not be a
valid assumption since, say, locations that are under stress of high infection numbers
may both not enter the reference date and receive the test results with additional delay.
Also, the sampling strategy for testing was changed several times.

In consequence, we plot the case numbers both by reporting and by reference date
for comparison, and also add a third number: The fraction of positive tests. In a
targeted testing regime, this fraction will go up when testing is made more restrictive,
and the other way around. It will thus react to changes in the testing regime in the
opposite direction as the case numbers. In practical terms, we normalize the fraction
curve such that it coincides with the cases curve in fall, and is above the cases curve
during all other times. This leads to a plausible corridor for the simulations.

Because of these issues, we also calibrate, in fact with higher priority, against the
hospital and the ICU numbers in Berlin. We believe those to be relatively unbiased,
since there was always sufficient hospital capacity in Berlin throughout the period
considered here.

Unrestricted model

Most parameters of the model are taken from the literature, as explained earlier, in
particular Fig 3. The remaining free parameters are, from Eq. (1), Θ, sh, and in. We
have set the base values of sh = in = 1. As mentioned before, we use these parameters
to model the wearing of masks, meaning that they are reduced when masks are worn.
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Fig. 9 shows the unrestricted base case with four different values of Θ. One finds
that the aggregated behavior at this level corresponds to that of typical SE(I)R models,
i.e. exponential growth, followed by a maximum, followed by exponential decrease.
Based on these plots, thetaFactor values of 1.0 or 1.2 seem plausible to be consistent
with the initial growth.4

Fig 9. Unrestricted base case. LEFT: Case numbers. The green and red dots denote
case numbers as reported by Robert Koch Institute [105]; the blue dots denote positive
test fractions [106] multiplied by 200. RIGHT: Hospital numbers. Each simulation
curve is averaged over 10 independent Monte Carlo runs with different random seeds.

Spring disease import

We take the disease import from abroad from data published by RKI ( [105], always on
Tuesdays). Currently, for Germany this data is only available on a nationwide
aggregated level. For this reason we scale it down to our Berlin model by using the
population size. The data is dated on the reporting date and not on the actual date of
becoming sick. Since the infection seeds are initiated into our model with the status
exposed (cf. Fig. 3) and it can be assumed that the reporting date is significantly after
the exposure date we date the data from RKI back by one week. The data provided by
RKI is available as weekly values so we assign these values to the respective Monday
and then interpolate between them. Since we assume unterreporting in the RKI
numbers, we multiply them by 4; this is discussed in Sec. Under-reporting. The initially
infected persons are drawn randomly from the population. The resulting disease import
is shown in Fig. 10; the description so far only concerns the spring disease import.

An advantage about adding disease import is that the date of the first infection is no
longer a free parameter: As shown in Fig. 11, the disease import is sufficient to drive
the first wave. The disease import data seems to lack some early cases, thus causing an
initially nearly vertical increase in the simulation. The dynamics then settles onto the
exponential increase shown in the previous section.

Reductions of activity participation

During the unfolding of the epidemics, people decided or were ordered to no longer
participate in certain activities. We model this by removing an activity from a person’s
schedule, plus the travel to and from the activity. In consequence, that person no longer
interacts with people at that activity location, and in consequence neither can infect
other persons nor can become infected during that activity, or while in public transport
vehicles to and from that activity. Overall, this reduces contact options, and thus
reduces epidemic spread.

4A thetaFactor of 1.0 corresponds to Θ = 0.000561.
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Fig 10. Disease import over time. Based on data taken from [105] (always on
Tuesdays), but multiplied by 4 in spring, and divided by 2 in summer (see text for
discussion).

Fig 11. Unrestricted base case, but with initial disease import from data. LEFT: Case
numbers; RIGHT: hospital cases. One finds that the initial slope dynamics is rather
independent from the thetaFactor.

A very important consequence of our modelling approach is that we can take that
reduction in activity participation from data. As stated earlier, that data comes from
the same source as our original activity patterns. Unfortunately, the activity type
detection algorithm is not very good for these unusual activity patterns, as one can see
in Fig. 12 when knowing that all educational institutions were closed in Berlin after
Mar/15. What is reliable, though, is the differentiation between at-home and
out-of-home time, as displayed in Fig. 2. One clearly notices that out-of-home activities
are somewhat reduced after Mar/8, and dramatically reduced soon after. After some
experimentation, it was decided to take weekly averages of the activity
non-participation, and use that uniformly across all activity types in our model, except
for educational activities, which were taken as ordered by the government.

To remove an activity with a certain probability, a random draw is made every time
a synthetic person has that activity type in its plan. This means that the model
assumes that, say for a 50% work reduction, there will be another 50% subset of persons
at work every day. This intervention, in consequence, does not sever infection networks,
but just slows down the dynamics.

One takes from Fig. 13 that the mobility reductions, as given by the mobility data,
is by itself not sufficient to explain the decreasing case numbers during spring.
Evidently, one could now reduce Θ, and this is what we have done in our early
simulations. This, however, artificially reduces the infection dynamics, and means that
the simulation will miss the second wave in fall.
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Fig 12. Reduced activity participation over the course of the epidemics in Berlin.

Fig 13. Case numbers (LEFT) and hospital numbers (RIGHT) in simulations with
reductions of activity participation as obtained from mobility data.

Outdoors vs. indoors season

The probability of getting infected during an encounter depends on whether the
encounter takes place indoors or outdoors. Outside, the probability of infection is
significantly reduced compared to inside. This is due to the fact that outdoors the air is
constantly in motion and therefore aerosols cannot accumulate. We assume that an
encounter outdoors decreases the infection probability by one magnitude [4, 9]. In
countries like Germany, seasonality has a great influence on how much time people
spend outside. In summer, people spend more time outdoors, while in winter they tend
to spend more time indoors.

We include into our model that up to 100% of leisure activities are undertaken
outdoors during summer, while that share reduces to 0% during winter. When an
activity occurs outdoors, the otherwise identical computation of the infection
probability is divided by 10. The model takes the actual temperatures as input; if the
daily maximum temperature is larger than T ∗ + 5C, then all activities that can happen
outdoors are outdoors; if the daily maximum temperature is smaller than T ∗ − 5C, then
all activities happen indoors; in between, probabilities are linearly interpolated. We use
T ∗ = 17.5C in spring, linearly increasing to T ∗ = 25C in fall; runs with different T ∗ in
spring vs fall are plausible, and yields a far more plausible infection dynamics than
keeping them the same.
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The justification for this is as follows. A survey on physical activities [107] shows
that, in summer, people in Germany perform about 80% of their physical activities
outdoors, while this proportion shrinks to 10% in winter. We have assumed that other
leisure activities (e.g. restaurants, visit friends) behave similarly. We also extend our
range to 0 and 100% since the fluctuations of the temperature already lead to average
values that are more than 0 and less than 100% (cf. Fig. 5).

Fig. 14 shows an example of the infection dynamics where both T ∗ in spring and T ∗

in fall are 17.5C; as one can see, either the decrease of the first wave is not strong
enough, or the second wave comes too late; note in particular the hospital numbers,
which for all values of thetaFactor do not have enough slope in the second wave. The
results with other T ∗, as long as they are the same in spring and fall, are the same.
Fig. 15 shows using 17.5C for spring and 25C for fall; the second wave now is triggered
earlier, and it is steeper.

Fig 14. Case numbers (LEFT) and hospital numbers (RIGHT) in simulations that now
also include the indoors/outdoors model, with a threshold temperature of 17.5C. A
thetaFactor between 0.6 and 0.8 is most plausible, but the second wave would come too
late and would not be steep enough (cf. in particular the hospital numbers).

Fig 15. Case numbers (LEFT) and hospital numbers (RIGHT) in simulations that now
also include the indoors/outdoors model, with a threshold temperature of 17.5C in
spring, and 25C in fall. A thetaFactor between 0.6 and 0.8 is most plausible, which
would well reproduce the second wave (cf. in particular the hospital numbers).

Masks and contact tracing

In April the wearing of masks in shops and in public transport vehicles became
obligatory in Berlin [108]. We have included this into the infection model of Eq. 1 by
reducing sh (if the contagious person wears a mask) and in (if the person to be
potentially infected wears a mask). This is dependent on the activity type, meaning
that persons only wear masks when shopping, doing errands or using public transport.
The effectiveness of different mask types is taken from from [98], i.e. cloth masks reduce
shedding and intake to 0.6 and 0.5 of their original values, surgical masks to 0.3 and 0.3,

February 27, 2021 27/40

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252583doi: medRxiv preprint 

https://doi.org/10.1101/2021.02.27.21252583
http://creativecommons.org/licenses/by/4.0/


and N95 (FFP2) masks to 0.15 and 0.025. The review article [99] comes up with about
0.05 for N95 masks, a factor of two larger, but still displaying a very large reduction.
The same paper [99] also shows that “masks” without a specification of the type has
much less of an effect. Finally, there may be the issue that lay people may not be able
to use N95 masks at full efficiency. In consequence, any of our results that depend on
N95 mask efficiency have to be interpreted “mechanically”: They are plausible under
the assumption that the fraction of people specified in the model is indeed able to use
N95 masks effectively.

The local transport company in Berlin (BVG, [109]) have provided us with the
compliance rates in public transport over time meaning that we do not have to estimate
them. We assume that the same compliance rates also apply to shopping activities. We
assume that 90% of those people wearing masks wear cloth masks and 10% wear N95
masks.
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Fig 16. Mask compliance rates over time. Data provided by BVG [109].

The goal of contact tracing is to break chains of transmission by tracing the contacts
of an infected person and putting these contacts into quarantine. In our model contacts
are traced during all activities except for public transport and shopping because we
assume that the health authorities are not able to find these contacts. A contact person
is only traced when the contact duration is longer than 15 minutes, which corresponds
to the RKI guidelines [110].

Persons that go into showingSymptoms are assumed to trigger a contact tracing
mechanism, which works as follows:

1. Look at all traced contacts that the infected person had in the 2 days [110] before
showing symptoms.

2. A probability γ determines if a contact person can be reached successfully and
also follows the stay-at-home order. γ is set to 0.5

3. The persons that have been traced successfully go into quarantine, but only after
a delay of d days, which allows to model the response time of the system. Our
base value of d is set to 5 days. Personal experience in our surroundings says that
tests are normally taken a day after symptoms start, and the result is available
again one day later in the evening. That is, contact tracing can start no earlier
than 3 days after symptoms onset. We add another two days to account for
possible additional delays.

4. A tracing capacity limits the number of persons per day for which its contacts can
be traced. The capacity is set to 0 until the end of March, 40 cases per day until
14/Jun, and to 200 cases per day afterwards. Germany had agreed on a limit of 50
cases per 100 000 inhabitants per week at which local governments were expected
to act [111]. This number was based on what the system presumably could handle
for contact tracing. For our Berlin scenario with 5 million persons, this translates
to 357 cases per day. Based on newspaper reports [112], the system was
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overwhelmed already at lower numbers, which is why we use 200.
5. Persons leave the home quarantine after 14 days, if they did not develop

symptoms during that time.
For d, a smaller value would be much better in terms of effectiveness, but our personal
experience in several cases says that this is unrealistic. For γ and the maximum tracing
capacity, we compared simulation results.5 Changes in γ make relatively little difference.
For the maximum tracing capacity, one can see that larger capacities would have kept
the new infections under control for longer than what happened in reality.

Masks and contact tracing, as described above, do not have a strong enough effect to
gauge them from the infection or hospital numbers. As explained in Sec. Reinfections
per activity type, masks in public transport and while shopping reduces R by about 0.1
each. Since masks were introduced in April, they reduce the slopes of all curves of
Fig. 15 accordingly. This makes the blue curve from that figure less plausible and the
orange curve more plausible, which is welcome since the larger thetaFactor is more
plausible (cf. Sec. Unrestricted model).

Contact tracing, in contrast, just pulls the infection numbers down while they were
low. Once contact tracing is overrun, it no longer influences exponential growth, and
thus not the slopes of the second wave in the logplot.

We leave both of these elements in the model, since they are plausible by itself, their
functioning is derived from first principles, and they have beneficial consequences. As
stated, just based on the data alone, the case to include them would not be strong
enough. The result can be seen in Fig. 17.

Fig 17. Case numbers (LEFT) and hospital numbers (RIGHT) in simulations that now
also include masks and TTI (trace, test, and isolate).

Summer disease import

After adding masks and contact tracing, the second wave is once more too late. Adding
summer disease import pushes the curve up again (Fig. 18). Other than during the
spring import, where we multiplied the RKI numbers by 4, we now divide them by two.
The reason is that the disease import stems from the case numbers, and as can be seen
in the figure, the factor between the case numbers and the re-scaled positive test
fraction is much smaller in summer than in spring (also cf. Sec. Under-reporting).
Setting the disease import to one, as would be plausible by this argument, leads to an
influence that is too large. Since there was widespread screening and an obligation to
remain into quarantine-at-home for many people returning from summer travel, we
argue that (1) the testing-and-quarantine regime had the consequence that many
disease imports did not reinfect others and that (2) the screening also found many
asymptomatic cases that would otherwise not have been included into the case numbers.

5https://covid-sim.info/2020-11-09/tracing
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Again, the case for adding this element, and in this way, is not very strong. An
alternative would have been to stay with the model of Fig. 15, with a thetaFactor
between 0.6 and 0.8 (look in particular at the hospital cases). Again, we prefer adding
masks, contact tracing, and summer disease import, since the models can be
constructed from first principlesand as a package, they allow for a slightly larger
thetaFactor, which overall seems plausible.

Fig 18. with summer import

Availability of data and materials

For computer code see https://github.com/matsim-org/matsim-episim.
Simulations were computed with version d16656f076640124de0361fc327d3803a80aa466
of the code, started with command

java -jar matsim-episim-1.0-SNAPSHOT.jar runParallel \

--setup org.matsim.run.batch.BerlinSensitivityRuns \

--params org.matsim.run.batch.BerlinSensitivityRuns$Params

The input data (including the synthetic mobility traces) are made public here:
https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/

countries/de/episim/openDataModel/input/

The output data used for the figures can be retrieved at
https://svn.vsp.tu-berlin.de/repos/public-svn/matsim/scenarios/

countries/de/episim/battery/2021-02-09/.
We would be happy to put the data into a more permanent location if desired;

unfortunately, our university repository currently has problems with such large data sets
as ours.

Supporting information

S1 Text. Senozon method
Since we are interested in trajectories for large population samples, we start from the

network-based approach. Because of privacy restrictions in Germany, the trajectories,
even when cut into 8-hour segments, cannot be used directly. In order to be compliant
with existing privacy regulations in Germany, they are therefore processed before they
can be used for scientific work. The steps are [113]:

1. First, a synthetic population with attributes home location, age, gender, and
employment status is generated based on available census data.

2. Separately, the signalization records, i.e. of celltower handovers, are converted into
plausible movement trajectories. This step attempts to remove celltower
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handovers that occur because of operator load rebalancing rather than user
movements, and to remove celltower handovers that occur during travel (since the
method is only interested in activities).

3. The resulting trips between activities are exported as plain hourly
origin-destination matrices.

4. At the same time, the movement trajectories from step 2 are annotated with
demographic categories from the Customer Resource Management of the
cellhphone company, and with plausible activity types, based on land-use
properties of the celltower areas and time-of-day. At the same time, the locations
are removed. The result, i.e. activity patterns including their times together with
each pattern owner’s home zone, gender, and age category, is exported as well.

5. For each synthetic person from step 1, at least 30 patterns from step 4 are
selected, based on closeness between attributes of the synthetic person and
attributes of the pattern owner; one of the patterns is selected randomly.

6. The resulting activity pattern is enriched with location information for all
non-home activities based on the travel times between activities and the
origin-destination matrix from step 3.

Our second data set, which contains the reductions of activity participation data for
each day since 2020-03-01 (cf. Figs. 12 and 2), is derived in the same way, but the
computation is stopped after step 2, and only the average times spent at each activity
type are aggregated per zip code and then exported.

S2 Text. Details of the mobility model

Handling of large facilities The resolution of our input data comes at the level of
“facilities”. Those can be interpreted as buildings or sometimes blocks. They often
contain multiple households, multiple company offices, multiple leisure facilities,
multiple shops, etc. For home activities, we split persons living in the same facility into
realistic household sizes with a maximum number of six people per household [114]. This
seems important since the within-household dynamics of COVID-19, and in particular
the fact that the secondary attack rate in households seems to be far below 100%, plays
an important role (e.g. [115]). For all other activities, we divide the facilities by some
globally set factor, called N spacesPerFacility . That is, if two persons spend overlapping
time at the same facility, the probability that they have interacted is 1/N spacesPerFacility .
This has important ramifications for multi-day modelling and mixing, see below.

Multi-day modelling Optimally, one would have multi-day trajectories. In our case,
the data that we have ends at the end of the day. Our simulations thus run the same
person trajectories again and again (except for weekends, see below). This presumably
underestimates mixing, since it is plausible to assume that there is some variation in
activity patterns from day to day. At this point, one needs to make a decision whether
our sub-spaces (see above) are frozen, meaning that the same sub-groups meet every
day, or not. Using the same sub-groups every day arguably is plausible for office
buildings, which may contain offices for several companies, and interaction may be
limited to sharing an elevator. It is less plausible for public transport trains, where
passengers are arranged differently every day. Possibly, a mix between the two
approaches is plausible, introducing the need for even more free parameters. In our
present model, we opt for the non-frozen setting, i.e. the other persons within a facility
that an ego person interacts with are randomly re-drawn for every new simulated day.
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N spacesPerFacility evidently influences the number of contacts that a person has. For
our simulations, we set it such that that number of contacts is roughly consistent with
real-world contact tracing. For our current input data, that leads to a setting of
N spacesPerFacility = 20.

Weekend modelling As already alluded to above, we use separate models for
Saturdays and Sundays. They come out of transport modelling in the same way as we
obtain the model for a “typical weekday” (see above). These models use the same
synthetic persons and facilities, and thus can be aligned with the weekday model. In
consequence, each synthetic person in our models, starting on Monday, (a) repeats the
same weekday five times, (b) runs her Saturday schedule, (c) runs her Sunday schedule,
and then starts over.

25% sample For computational reasons, we use a 25% sample of the full population.
The sample is constructed by choosing 25% of all persons in the population randomly
and retaining their full trajectories. The splitting of households as described above is
done after the sampling, meaning that we have realistic household sizes in the 25%
scenario but consider only 25% of them; also, the number of contacts to determine the
parameter N spacesPerFacility (see above) is determined for the 25% model. We have also
run the full 100% model to check that there are no major differences. The 25% model
allows to finish runs within a single-digit number of hours, which was and is important
for fast model turn-around driven by the the necessity for fast progress given the
demand for the results by the decisionmakers. All results are reported after upscaling to
100%.
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Planung und Bau von Küchen und Kantinen für 50 bis 1000
Verpflegungsteilnehmer; 2002.

77. Bundesministerium der Justiz Und. Verordnung über Arbeitsstätten; 2020.
http://www.gesetze-im-internet.de/arbst_ttv_2004/.

78. Technische Regeln für Arbeitsstätten ASR A3.6. Ausschuss für Arbeitsstätten;
2012.

79. DIN Deutsches Institut für Normung. DIN EN 16798-1; 2015.

February 27, 2021 37/40

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252583doi: medRxiv preprint 

https://www.vsp.tu-berlin.de/menue/forschung/projects/2018/avoev/
https://www.vsp.tu-berlin.de/menue/forschung/projects/2020/reallabhh/
https://www.vsp.tu-berlin.de/menue/forschung/projects/2020/reallabhh/
https://www.vsp.tu-berlin.de/menue/forschung/projects/2020/mosaik_2/
https://www.vsp.tu-berlin.de/menue/forschung/projects/2020/mosaik_2/
https://www.vsp.tu-berlin.de/menue/forschung/projects/2020/komodnext/
https://www.vsp.tu-berlin.de/menue/forschung/projects/2020/komodnext/
https://www.berlin.de/sen/soziales/service/berliner-sozialrecht/kategorie/ausfuehrungsvorschriften/av_wohnen_anlage1-571941.php
https://www.berlin.de/sen/soziales/service/berliner-sozialrecht/kategorie/ausfuehrungsvorschriften/av_wohnen_anlage1-571941.php
https://www.arbeitssicherheit.de/schriften/dokument/0%3A8144291%2C4.html
https://www.arbeitssicherheit.de/schriften/dokument/0%3A8144291%2C4.html
http://www.gesetze-im-internet.de/arbst_ttv_2004/
https://doi.org/10.1101/2021.02.27.21252583
http://creativecommons.org/licenses/by/4.0/


80. WHO. Report of the WHO-China Joint Mission on Coronavirus Disease 2019
(COVID-19). 2020; 2020. https://www.who.int/publications/i/item/
report-of-the-who-china-joint-mission-on-coronavirus-disease-2019-(covid-19).

81. He X, Lau EHY, Wu P, Deng X, Wang J, Hao X, et al.. Temporal dynamics in
viral shedding and transmissibility of COVID-19; 2020.

82. Wölfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, Müller MA, et al.
Virological assessment of hospitalized patients with COVID-2019. Nature.
2020;581(7809):465–469. doi:10.1038/s41586-020-2196-x.

83. Dreher M, Kersten A, Bickenbach J, Balfanz P, Hartmann B, Cornelissen C,
et al. Charakteristik von 50 hospitalisierten COVID-19-Patienten mit und ohne
ARDS. Dtsch Arztebl Int. 2020;117:271–278.

84. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical Characteristics of
138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in
Wuhan, China. JAMA. 2020;doi:10.1001/jama.2020.1585.

85. Robert Koch Institute. RKI - SARS-CoV-2 Steckbrief zur
Coronavirus-Krankheit-2019 (COVID-19); 2020. https://www.rki.de/DE/
Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html.

86. Ashcroft P, Huisman JS, Lehtinen S, Bouman JA, Althaus CL, Regoes RR, et al.
COVID-19 infectivity profile correction. 2020;.

87. Brauner JM, Mindermann S, Sharma M, Stephenson AB, Gavenčiak T,
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107. Statistisches Bundesamt. Ausübung von Sport im Freien in Deutschland 2017;
2017. https://de.statista.com/statistik/daten/studie/1673/umfrage/
sport-im-freien.

108. Wikipedia contributors. COVID-19-Pandemie in Berlin;.
https://de.wikipedia.org/w/index.php?title=COVID-19-Pandemie_in_

Berlin&oldid=205195302.

109. BVG. Willkommen bei den Berliner Verkehrsbetrieben — BVG; 2020.
https://www.bvg.de/de.

110. Robert Koch Institut. Kontaktpersonen-Nachverfolgung bei respiratorischen
Erkrankungen durch das Coronavirus SARS-CoV-2; 2020.
https://web.archive.org/web/20201018130652/https:

//www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/

Kontaktperson/Management.html.

February 27, 2021 39/40

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 1, 2021. ; https://doi.org/10.1101/2021.02.27.21252583doi: medRxiv preprint 

https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/SeBluCo_Zwischenbericht.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Projekte_RKI/SeBluCo_Zwischenbericht.html
www.corona.rki.de
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html
https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Situationsberichte/Gesamt.html
https://www.berlin.de/corona/lagebericht/desktop/corona.html
https://de.statista.com/statistik/daten/studie/1673/umfrage/sport-im-freien
https://de.statista.com/statistik/daten/studie/1673/umfrage/sport-im-freien
https://de.wikipedia.org/w/index.php?title=COVID-19-Pandemie_in_Berlin&oldid=205195302
https://de.wikipedia.org/w/index.php?title=COVID-19-Pandemie_in_Berlin&oldid=205195302
https://www.bvg.de/de
https://web.archive.org/web/20201018130652/https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Kontaktperson/Management.html
https://web.archive.org/web/20201018130652/https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Kontaktperson/Management.html
https://web.archive.org/web/20201018130652/https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Kontaktperson/Management.html
https://doi.org/10.1101/2021.02.27.21252583
http://creativecommons.org/licenses/by/4.0/


111. tagesschau. Bund und Länder einigen sich auf weitreichende Lockerungen; 2020.
https:

//www.tagesschau.de/inland/lockerungen-bund-laender-101.html.

112. Berliner Zeitung. Corona: Berlin überlastet bei Kontakt-Nachverfolgung; 2020.
https://www.berliner-zeitung.de/news/

corona-berlin-ueberlastet-bei-kontakt-nachverfolgung-li.110998.

113. Senozon. Mobility Pattern Recognition (MPR) und Anonymisierung von
Mobilfunkdaten; 2020. https:
//senozon.com/wp-content/uploads/Whitepaper_MPR_Senozon_DE.pdf.

114. Destatis. Privathaushalte nach Haushaltsgröße im Zeitvergleich; 2020.
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