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Abstract

Demand Responsive Transport (DRT) services are gradually changing urban trans-
portation. DRT (also: ridehailing, on-demand mobility) describes a hybrid of regular
public transit and personalized taxi services. In this study, an innovative dynamic
DRT pricing scheme is developed and applied to a simulation model of the Greater
Berlin area, Germany. The proposed pricing scheme applies a correction to the DRT
fare: (a) DRT fares are increased if the corresponding trip can be well-served by con-
ventional schedule-based public transit. (b) DRT fares are decreased if the schedule-
based public transit alternative is insufficient. This pricing concept aims to reduce
the cannibalization of schedule-based public transit by DRT. Furthermore, the pricing
concept aims to reduce private car ownership in areas with poor public transit pro-
vision. The simulation experiments carried out for Berlin suggest that the strategy
can effectively shift users from DRT to public transit, in particular during peak hours
and in the city center and western Berlin area. Reducing DRT fares during times of
poor public transit service is found to shift private car trips to the DRT mode. Total
vehicle-distance traveled is observed to reduce by 3% in both urban and suburban
areas. Overall, the findings indicate that the proposed DRT pricing scheme is a useful
approach to shift users to more efficient and sustainable transportation modes.

1 Introduciton and problem statement

In recent decades, advances in mobile communication technology development are allowing
new user-centric services to transform urban mobility. Using smartphone applications,
travelers can easily send their location information and request a ride which may be
shared with other travelers. Ridesharing services provided by Transportation Network
Companies (TNCs), e.g., Uber, Lyft, and Didi, are commonly defined as Ridehailing or
Demand Responsive Transport (DRT). DRT has the potential to combine the advantages
of the private car mode and conventional schedule-based public transit. Thus, users may
experience reduced monetary travel costs or an improved service quality. For cities, DRT
holds potential to improve efficiency and environmental sustainability by reducing the
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overall vehicle-kilometers traveled. To achieve this goal, it is crucial that DRT mainly
competes with the private car mode and single-passenger taxi services rather than with
the schedule-based public transit.

Data from several studies suggest that DRT services increase traffic congestion. According
to Schaller (2018), even if 50 percent of the rides are shared, 2.2 DRT vehicle miles are
added for each reduced private car mile as most DRT users switch from non-auto modes to
shared rides. A similar conclusion is found in Gehrke (2018), where ridehailing is described
to add new car trips to the Boston region’s roads which increases traffic congestion.

This paper attempts to bridge the gap between the ideal expectation and the practical
use of DRT by proposing an innovative pricing concept. By taking advantage of DRT
users’ price-sensitivity, the mode shift from schedule-based public transit to DRT can be
controlled by dynamically adjusting every DRT trip’s price according to the real-time
public transit service quality. To analyze the extent of the effects on a major city, a
case study of the Berlin metropolitan area was modeled using a mesoscopic transport
simulation framework.

The remainder of this paper is organized as follows. Section 2 provides a literature re-
view. Section 3 briefly describes the agent-based simulation framework and presents the
proposed DRT pricing schemes. Section 4 describes the Berlin case study, simulation pa-
rameters, and experiments. Section 5 describes the simulation results, Section 6 provides
the discussion and Section 7 concludes this study.

2 Literature review

Several studies investigate the diverse operation strategies of (automated) DRT services.
Some of these studies focus on how to better integrate DRT within the public transport
system or how to replace schedule-based public transit services, without looking in detail
at prices. For example, Bischoff and Maciejewski (2020) introduce a rebalancing algorithm
for a DRT service, which optimizes the empty vehicle rebalancing process and improves
DRT as a feeder mode to connect public transport. Leich and Bischoff (2018) use a
simulation approach to replace existing buses by SAVs and observe higher operating costs
and only small travel time gains in comparison to conventional buses.

Other studies explicitly address the impact of pricing schemes on DRT services. For ex-
ample, Reza Vosooghi (2019) suggest that a standard 4-seats car remains the best option
among all vehicles of ridesharing services when the price of ridesharing is designed as 20%
lower than no-pooling scenario. Kaddoura et al. (2020a) study effects of an external cost
pricing schemes for shared autonomous vehicles (SAV) and find that without a conges-
tion charge for SAV users and private car users, the level of traffic congestion increases,
air pollution levels decrease, and noise levels slightly increase in the inner-city area. In
contrast, a congestion charge for SAV and private car users pushes users from SAVs to
the walk and bicycle modes. In a similar fashion, Gurumurthy et al. (2019) also use the
simulation framework MATSim to show how SAVs may best be introduced to a city or
region. Results indicate that a road-pricing for both SAV and private cars in the peak
periods is able to increase SAV demand and fleet-manager revenue. SAVs are able to earn
around $100 per SAV per day even after paying tolls at low-fare levels.

Some papers consider pricing strategies based on the intensity of demand for DRT services.
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Figure 1: MATSim loop (Horni et al., 2016)

Bimpikis et al. (2019) study the use of spatial price discrimination to balance the demand
when DRT serves passengers in a network of locations. Chen and Kockelman (2016) finds
that pricing strategies that attempt to balance available SAV supply with anticipated trip
demand can decrease average wait times by 19% to 23%. Based on a simulated case study
of Berlin, Kaddoura et al. (2020b) suggest that a small service area and too low prices
may result in an unwanted mode shift effect from walk and bicycle to DRT. A higher
fares-setting and a larger DRT service area contribute towards an increase of the desired
mode shift effect from car to DRT and reduces the mode shift from walking and bike to
DRT.

To the best of the authors’ knowledge, this paper is the first to propose a DRT pricing
scheme, which is based on the real-time service quality of the alternative schedule-based
public transit mode.

3 Methodology

3.1 Agent-based transport simulation framework

MATSim overview MATSim (Multi-Agent Transport Simulation, www.matsim.org) is
an open-source software developed under the terms of the GNU General Public License1,
version 2 or later, published by the Free Software Foundation2. The core code and several
extensions are available on GitHub3.

In MATSim, each transport user is simulated as an agent. A typical MATSim simulation
contains a configurable number of iterations, represented by the loop depicted in Fig. 1.
It starts with an initial demand, which includes each agent’s travel plans describing the
daily activity patterns (e.g., home-work-leisure-home), the activity locations, the activity
end time, and information about the trips between these activities. Applying an iterative,
evolutionary approach, this initial demand is optimized individually by each agent. In
each iteration, the travel plans are executed (mobsim), evaluated (scoring) and modified
(replanning).

Mobsim : All travel plans are simultaneously executed. Numerous modes of transporta-
tion are supported by the MATSim core code and its extensions, which related to this
study are car, bike, walk, public transit, and DRT. Regarding mode car, MATSim applies
a queueing model for the simulation of traffic congestion and vehicle movements (Gawron,
1998). For bike and walk, the scenarios involved in this paper will set them to teleported

1https://www.gnu.org/licenses/
2https://fsf.org
3https://github.com/matsim-org/matsim
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modes. As for public transit, MATSim supports very detailed modeling approach: Transit
vehicles run along the defined transit line routes, picking up and dropping off passengers
at stop locations accounting for the transit schedule, transit vehicles’s capacities and max-
imum speeds. The detailed description of PT dynamics in MATSim can be found in Rieser
(2010) and Rieser (2016). A detailed description of DRT is provided later in this section.

Scoring : For each agent, the executed plan is evaluated based on predefined utility
functions and behavioral parameters (Nagel et al., 2016). The deterministic part of the
utility is referred to as the score.

Replanning : During replanning, agents are enabled to adjust their travel behavior, i.e.
switch to another route, chose another departure time or use a different mode of trans-
portation (see e.g. Balmer et al., 2005; Lefebvre and Balmer, 2007; Grether et al., 2009).

The iterative process is repeated until the scores stabilize. Assuming that the set of each
agent’s travel plans represents a valid choice set, the system state is an approximation of
the stochastic user equilibrium (Nagel and Flötteröd, 2012). A detailed description of the
agent-based transport simulation framework MATSim is described in Horni et al. (2016).

MATSim DRT overview The ridesharing services are simulated using the DRT con-
tribution introduced in Bischoff et al. (2017). For the vehicle routing and assignment,
the DRT-contribution uses the DVRP contribution presented in Maciejewski (2016) and
Maciejewski et al. (2017) as backend. For a DRT trip, agents first submit a ride request
which is then processed by the centralized dispatching system. Typically, the drive-task
is assigned to the vehicle that takes the shortest additional time to complete the request
taking into consideration waiting and in-vehicle time service constraints for both the new
and already inserted requests. Besides, DRT vehicles are simulated like an ordinary car
in terms of the traffic-flow simulation. DRT vehicles can cause congestion and are also
affected by delays caused by other road users. After arriving at the destination stop, the
agent will be charged based on the unshared travel distance of the ridership as well as
based on the predefined minimum or base fare.

3.2 Proposed DRT pricing scheme

Overview This study proposes a dynamic DRT pricing scheme based on the real-time
public transit service quality. For each DRT trip, the alternative public transit service
quality for the same origin-destination and time of day is evaluated. Based on the evalua-
tion results and predefined public transit service quality thresholds, the DRT trips will be
classified as one of three public transit service level categories: high-level, mid-level, and
low-level public transit service. Based on the calculated level-of-service, additional fares
or discounts will be computed and then applied to the DRT customers accordingly.

With this approach, travelers in areas with high frequent service public transit will ex-
perience higher DRT fares, encouraging them to leave DRT and opt for other modes of
transportation. Considering the convenient public transit options available, public transit
will be their most likely selection. In contrast, in low-level public transit service areas or
times, travelers are encouraged to use the DRT mode due to the relatively low fares.

In implementing the dynamic DRT pricing approach, the methods of public transit service
quality assessment, the thresholds for public transit service quality, and the approach for
calculating fare increases and discounts are the most critical components and need to be
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carefully considered. The corresponding details are described and presented in Section
3.2.1, 3.2.2, and 3.2.3.

3.2.1 Quantitative evaluation of PT service quality

Advanced GIS methods open data sources, and increasing processing capacity allow the
direct comparison of different travel modes that can be easily presented to travelers for
use in their daily travel behavior. Services like Google Maps, for example, can provide
accurate, reliable, and timely predictions of travel time and travel distance for travelers
across various modes of transportation.

Accurate prediction of travel times across several modes do not only make the travel of
passengers more convenient, but also provides a useful tool for scientific research on modal
performance and travel behavior. In many studies, comparing the travel times provided
by public transit and other transportation modes are used to assess public transit service
quality and to identify the disparities of public transit in accessibility (Frank et al., 2008;
Salonen and Toivonen, 2013). The evaluation of public transit service quality in this study
will be conducted in a similar way: For each DRT ride request, the ratio of the predicted
PT travel time to the predicted DRT travel time will be used as the metric for assessing
public transport service quality. This metric can be described as:

φ=

TT pre
pt

TT pre
drt

(1)

where TT pre
pt is the predicted travel time by public transit and TT pre

drt is the predicted
travel time by mode DRT.

In this paper, the estimated travel times by public transit and DRT are calculated based
on a door-to-door approach with same origin, destination, and departure time.

The public transit travel time, TT pre
pt includes (1) walking time from origin to stop; (2)

waiting time for the transit vehicle; (3) in-vehicle time; (4) transfer time (e.g. walking
and waiting) if needed; (5) walking time from the arrived stop to the destination.

The DRT travel time, TT pre
drt includes (1) walking time from the point of origin to the

place to be picked up by DRT; (2) waiting time for DRT vehicle; (3) in-vehicle time; (4)
walking time from drop-off location to destination.

3.2.2 Determination of PT service quality levels

After evaluating public transit service quality of equivalent DRT trips, the next step is to
classify the public transit service level based on the calculated values of ratio φ. This step
determines whether the trips belong to high-, mid-, or low-public transit service conditions
and then applies the pricing adjustment accordingly.

In this paper, we will use two thresholds φh and φl to classify the service level of public
transit. These two thresholds should be obtained by analyzing the empirical data and
defined prior to the calculation of quality of service. For DRT trips where φ is less than
φh, its public transit service level will be recognized as high-level. DRT trips where φ is
greater than φl belong to low-level group.

Furthermore, travel-distance should also be considered when determining the threshold.
From the perspective of DRT users, even if the φ value is small, the massive absolute time
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saved by using DRT still has substantial appeal. For example, a 20% reduction in travel
time may be barely noticeable for a 5km trip, but quite substantial over a 50km trip when
considering total time saved.

In summary, the determination of public transit service quality thresholds φh and φl

should be predefined from empirical data. Both should show a downward trend as the
travel distance increases (see Section 4, where procedures for determining thresholds for
the Berlin case study are described in detail).

3.2.3 Calculation of optimized DRT fares

Penalty pricing scheme (φ < φh): For these DRT users, using public transit will not
cause excessive time loss compared with using DRT. As a result, operators will increase
the fare of DRT services, which can be described as a penalty due to their insisting on
opting for DRT. Similar to how DRT fares are normally calculated, the penalty will be
likewise charged based on the unshared (direct) trip distance, and the penalty per meter
cpe will be calculated according to Eq. 2.

cpe = kpe ∗ cB ∗ φh

φ
− cB (2)

where cpe is the penalty distance fare in EUR per meter, kpe is the penalty factor (kpe ≥ 1),
and cB is the basic distance fare of DRT service (EUR/m).

Reward pricing scheme (φ > φl): On the other hand, when φ is not only greater
than φh, but also greater than φl, then public transit is slower and less attractive than
DRT. At this point, the operator will appropriately lower the price of the DRT services,
and this pricing strategy can be described as a reward pricing strategy.

cre = −cB ∗min(klim, kre ∗
φ

φ l

) (3)

where cre is the reward distance fare in EUR per meter (cre < 0), kre is the reward factor
(kre > 0), klim is the maximum reward limiting factor (0 < klim ≤ 1), and cB is the basic
distance fare of the DRT service in EUR per meter.

Eq. 3 is proposed in this study to compute the DRT fare reduction. It should be noted
that the cre is negative as a fare deduction. Considering the cost of operating the vehicle
for the DRT operator, there is a limit to the fare reduction that can be applied before
the service becomes unprofitable, i.e., −klim ∗ cB. When −klim = 1, the applied reward
can reach to −cB. When this occurs, DRT services are free (cB − cB = 0) in the aspect
of distance fare. The maximum reward limiting factor can be set to ensure that DRT
operators remain profitable without unrealistic discounts.

Refer to the condition of φl > φ > φh, there would be no specific pricing scheme imple-
mented for customers. They will be charged only with the pre-defined base settings. A
Java-based code implementation of the above DRT pricing algorithm has been published
on GitHub, see GitHub (smart-drt-pricing, 2021, branch master, commit ID 4f7d2b8)4.

4https://github.com/matsim-vsp/smart-drt-pricing
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Figure 2: Case study: Greater Berlin area. Black line: DRT service area boundary (entire Berlin
area). Blue lines: Road network. Yellow area: inner-city center area

4 Case studies and simulation experiments

The proposed smart DRT pricing strategies are applied to the real-world simulation model
of the Greater Berlin area generated by Ziemke et al. (2019) based on the methodology
developed by Ziemke et al. (2015). Transport supply cover all major and minor roads in
the Greater Berlin area, including all public transit lines. Travel demand is modeled as
individual agents, including commuters and non-commuters using the car, public transit,
bike, ride, and walk modes. For computational efficiency, in this study a 10% popula-
tion sample is used and road capacities are accordingly reduced to account for realistic
congestion effects.

As a result, the entire scenario includes a total of 471,002 agents and 1,823,235 trips,
with an average of 3.7 trips per person per day. The model is calibrated with reference to
surveys of various real traffic data , i.e, car counts, modal split and trip-distances (Ahrens,
2009; infas and DLR, 2010). The applied Berlin case study is publicly available via GitHub
(MATSim-Berlin, 2020, branch 5.5, commit ID f60e7bf)5.

4.1 DRT setup

DRT is added as a new mode of transportation and can be used within the service area
(Fig. 2) during the entire day. A total of 10,000 DRT vehicles are available, each with a
maximum capacity of four passengers. Before the start of the first iteration, the service
vehicles are evenly distributed in the service area. After completing a service, the vehicles
will stay at the drop-off link until they are assigned to a new task. After one iteration has
ended, the vehicle’s location is recorded and applied directly to the beginning of the next
iteration. In this study, the DRT mode can not be used as an access or egress mode in
combination with public transit.

The basic fare of DRT services consists of two components: a minimum fare of 2 EUR

5https://github.com/matsim-scenarios/matsim-berlin
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Figure 3: Distribution of φ in base case

and distance-based fare of 0.35 EUR/km. The choice of the base fare is future-oriented,
and assumes that all DRT vehicles will be autonomous which reduces the operating costs
and allows DRT to become a common mode for travelers’ daily commutes.

4.2 Simulation experiments: base case

In the base case (Exp. bc), no dynamic DRT pricing strategy is implemented. Agents
using DRT are only charged with the predefined fare setting mentioned in Section 4.1.

Table 1: Statistics of φ in base case

count mean 25th-pctl 50th-pctl 75th-pctl

24307 2.26 1.82 2.18 2.61

Although there is no application of dynamic DRT pricing strategies in the base case, the
estimated travel time by DRT (TT pre

drt ) and by public transit (TT pre
pt ) and the resulting

ratio value φ were collected and recorded during the simulation for each DRT trip. This
data was collected in order to determine thresholds for the public transit service quality
levels (φh) and (φl). The data is also valuable for comparing the base case with other
experimental cases to verify the results of the pricing approach’s implementation.

Tab. 1 shows the summary statistics for φ in the base case without dynamic DRT pricing.
Among the entire 24,307 DRT trips, the average public transport travel time is 2.26
times that of DRT unshared travel time. Moreover, according to Fig. 3, which shows the
relationship between the φ and unshared travel distance6 (du). With the increase in the
du, the φ basically indicates the expected downward trend as stated in Section 3.2.2.

The only exception is the 00-01 km segment, where a relatively small φ is observed. This

6Same value as travel distance with mode car, obtained from built-in API of DRT extension module
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Figure 4: Thresholds in for DRT pricing approach. The size of the circle corresponds to the number
of DRT trips in each travel distance bin

may be due to higher proportion of travel times involving walking and waiting times for
those short trips, thus reducing the disparities in travel time between the DRT and public
transit modes.

4.3 Simulation Experiments: policy cases

Penalty case: Exp. p 1.0 In this scenario, the dynamic DRT pricing strategy proposed
in this paper will be applied, but only the part related to penalties. In other words, for
DRT trips with poor public transit service, there is no corresponding price discount to
reward the users. The detailed penalty mechanism has been described in Section 3.2.3,
and the selected values of kpe and φh are given here:

kpe = 1.0 (4)

φh =

!
−0.00001d3u + 0.00142d2u − 0.06539du + 2.39697, du ≤ 40
1.41337, du > 40

(5)

where du is the unshared travel distance with DRT vehicles in km.

In the penalty case, the threshold φh is set by the distribution of φ according to the
base case. As an experiment, the threshold value φ is set at the overall median level.
Meanwhile, according to the analysis in the previous section, the distance factor of DRT
trips must be considered when setting the threshold value, so Eq. 5 is proposed.
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Eq. 5 is obtained by fitting the median value of φ in the base case contained within each
kilometer, e.g., 0-1 km, 1-2 km, etc. A corresponding scatterplot is shown in Fig. 4. Since
there is no DRT trip exceeding 40 km in the base case, the DRT trip over 40 km has a
fixed value of φh = 1.41337, i.e., when du = 40km, the calculation result from Eq. 5.

As a result, a total of 10,932 DRT trips in base case had corresponding high-level public
transit service quality. This amount accounts eventually for 44.97% of all DRT trips in
the base case, which is on par with a median level as is desired.

Reward case: Exp. r 0.5 Similar to Exp. p 1.0, the scenario considers only one type of
pricing adjustment. In this scenario, when adjusting DRT fares, only the reward strategy
will be applied.

As an experiment, the value of kre and klim are both set to 0.5 (see Eq. 6), which means
that for DRT trips, the maximum discount is half of the base cost. Moreover, the 80th
percentile of the φ in Exp. bc is adopted as the reward threshold.(see Eq. 7 and Fig. 4).
As a result, a total of 5023 DRT trips in the base case met the conditions for accepting
rewards, accounting for 20.67% of all DRT trips.

kre = klim = 0.5 (6)

φl =

!
−0.000006d3u + 0.00119d2u − 0.07407du + 3.00593, du ≤ 40
1.557759595, du > 40

(7)

where du is the unshared travel distance with DRT vehicles in km.

Final Case: Exp. p 1.0 r 0.5 In the final case, both the penalty strategy and reward
strategy are in effect. As an integration of Exp. p 1.0 and Exp. r 0.5, the computation of
DRT fare in the final case is following the Eq. 2, Eq. 3, Eq. 4, Eq. 5, Eq. 6, and Eq. 7.

5 Results

5.1 DRT trip number and fares

The differences in the number of DRT trips between Exp.bc and the other three policy
cases are highlighted in Tab. 2.

One key finding is that the proposed DRT pricing strategy can significantly reduced the
demand for DRT services while public transport provided comparable or better perfor-
mance. Conversely, dynamic DRT pricing effectively increased the number of DRT services
when public transport provided worse service.
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Table 2: DRT trip number in each simulation experiment

bc p 1.0 r 0.5 p 1.0 r 0.5

num of DRT trips 243,070 213,390 263,910 223,360

high-PT-service-level 109,320 68,910 91,600 54,430

middle-PT-service-level 83,520 86,350 91,800 86,660

low-PT-service-level 50,230 58,130 80,510 82,270

Exp. p 1.0: A total of 213,390 trips finally adopted DRT as the mode of transportation for
travel, i.e., a reduction of 12% compared with the base case. Tab. 2 demonstrates that this
reduction mainly results from the penalty pricing strategy on DRT trips: compared with
Exp.bc, the number of DRT trips with high-grade public transit service dropped sharply
from 10,932 to only 6,891, i.e., a 36.96% reduction. For those with mid- and low-level
public transit services that are not directly affected by the smart pricing scheme, a slight
increase can be observed. Thus, the penalty pricing strategy can reduce the attractiveness
of DRT to users with high-grade public transport accessibility by increasing DRT fares.
Service vehicles can also be diverted to serve users, to whom public transit can hardly be
seen as a reasonable alternative.

Exp. r 0.5: Compared with the base case, the number of DRT trips increased by 20,840
(8.57%) to 263,910. As expected, the newly added DRT trips mainly occur under the
condition of a lower public transit services level, because these trips can benefit from the
reward strategy by being exempted from certain fees. Just in terms of low-grade PT
service alone, the number of DRT trips increased by nearly 60% (from 50,230 to 80,510)
in reward case compared with Exp. bc.

Exp. p 1.0 r 0.5: The impacts observed above are confirmed in this scenario as well.
Compared with Exp. bc, the number of DRT trips under high-level public transit service
decreased by 54,890 (-50.21%), while the number of DRT trips under low-PT service
quality increased by 63.78%, i.e., an increase of 32,040 trips. Finally, a total of 22,336
DRT trips appear in Exp. p 1.0 r 0.5. Consistent with the expectation, this value is
between Exp. p 1..0 and Exp. r 0.5, while compared with base case, it is reduced by
19,710 (8.1%), indicating that under this experiment parameters penalties have a stronger
effect on traveler behavior than the rewards.

Tab. 3 shows the revenue statistics under different pricing strategies. In terms of total
daily revenues (total revenue = basic revenue + penalty revenue + reward revenue), the
highest revenue is observed in Exp. r 0.5. However, in the aspects of average values,
whether per km or trip, Exp. r 0.5 is the lowest compared with other cases.
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Table 3: Revenue statistics

bc p 1.0 r 0.5 p 1.0 r 0.5

total revenue [EUR] 538,591.0 520,591.1 569,911.9 503,448.6

basic revenue [EUR] 538,591.0 501,097.7 590,754.5 511,071.1

penalty revenue [EUR] 0.00 19,493.4 0.00 14,008.3

reward revenue [EUR] 0.00 0.00 -20,842.7 -21,630.7

avg. revenue per distance [EUR/km] 0.43 0.44 0.39 0.41

avg. revenue per trip [EUR] 2.22 2.44 2.16 2.25

The final case (Exp. p 1.0 r 0.5) implements both strategies simultaneously, and obtains
the lowest revenues under all experiments. This is because fewer users are willing to
pay fines under the combined effect of the entire pricing strategy, but more users are
attracted to travel with DRT through discounts. In consequence, operators will charge
lower penalties (14,008.3 EUR) than the discounts (21,630.7 EUR) they offer. In addition
to the decrease in the number of DRT trips, a revenue loss can be estimated (about 35000
EUR less compared with Exp. bc).

5.2 Temporal changes of DRT trips

As described in the previous sections, the DRT dynamic pricing strategy proposed in this
paper is based on the service quality of public transport. In general, the service quality
of public transportation should follow a predictable temporal and spatial pattern. For
example, buses and trains arrive at more frequent intervals during peak periods than
during off-peak periods, and the accessibility of public transit in the city center is often
better than the lower density city suburb. Hence, it can be reasonably hypothesized that
after the implementation of the pricing strategy, the DRT services should also be affected
accordingly. To measure these effects, impact of the pricing schemes on DRT’s temporal
and spatial distribution needs to be analyzed and is presented as follows.

Fig. 5 shows the variation of the temporal distribution of DRT trips compared with the
base case. It can be clearly seen that the changes in DRT trip amounts follow a certain
temporal pattern, which is:

Exp. bc vs. Exp. p 1.0: Under the penalty pricing strategy, the demand for DRT
decreases greatly, but this effect is more significant in peak hours. For midnight, when
public transit service is poor, the consequence of eliminating DRT demands has less impact.

Exp. bc vs. Exp. r 0.5: In contrast, an increase in DRT demands is more likely to occur
during the non-peak periods, i.e., from midnight to 7 am and from 8 pm to midnight. The
demand enhancement for DRT services between 10 am and 6 pm is less substantial.

When the two strategies are executed together, the effect is even more pronounced. Be-
tween 6 am and 8 pm, when public transport is considered very dense, the demand for DRT
decreases, while during midnight and early morning hours, the number of DRT services
increases due to the implementation of the reward pricing strategy.
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Figure 5: Hourly changes in the number of DRT trips

5.3 Spatial changes of DRT trips

In the previous section, the temporal changes in demand for DRT caused by the dynamic
pricing schemes are presented and discussed. Even within a given time period, however,
a spatial variation of changes in the DRT demand is observed which stresses the uneven
distribution of public transport services in the city. Public transit generally offers better
service in densely populated city centers compared to low-density outskirts. The dynamic
pricing model reflects this discrepancy.

The Ringbahn is a 37.5 km long railway line of the Berlin S-Bahn network that functions as
a rough border of the inner-city Berlin area. For this paper, the area within the Ringbahn
is classified as Berlin city center, while the area outside the Ringbahn is classified as city
outskirts (see Fig. 2).

The variation of OD data of DRT trips between the urban center and the outskirts can
be an essential factor in studying the impact of the pricing schemes on DRT spatial
characteristics. To eliminate the effect of time-of-day, analysis is limited to the morning
period from 8 am to 11 am. The absolute change in the number of DRT trips during this
time interval compared to Exp.bc is indicated in Tab. 4.

The dynamic pricing strategy proposed in this paper significantly reduces the use demand
of DRT during peak hours in the city center. In Exp. p 1.0, where the penalty pricing
strategy is implemented, the number of DRT trips, whose starting point and ending point
are both inside the city center, decreases by about 27%. In the Exp. r 0.5, the number
of DRT trips in all other OD-relations except center-to-center increased, confirming the
ability of the reward strategy to improve the attractiveness of DRT in urban suburbs.

Finally, in the Exp. p 1.0 r 0.5, where the two pricing strategies work together, the amount
of DRT trips occurring in the city center is greatly reduced by 2860 trips compared to the
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Table 4: Changes of DRT trips in city-center and city-outskirts during 8 am-11 am

from to bc
compare to Exp.bc

p 1.0 r 0.5 p 1.0 r 0.5

center center 9430 -2540 (-26.93%) -1150 (-12.19%) -2860 (-30.32%)

center outskirts 4760 -390 (-8.19%) +530 (+11.13%) -410 (-8.61%)

outskirts center 4820 -570 (-11.83%) +290 (+6.01%) -690 (-14.32%)

outskirts outskirts 32780 -4950 (-15.10%) +970 (+2.95%) -4530 (-13.81%)

base case level of 9430 trips. This reduction (-30.32%) reaches the most significant value
among all OD-relations of all the experiments.

In addition to generally dividing Berlin into city-center and city-outskirts, the changes in
the demand for DRT in each borough of the urban area also play a significant role in the
spatial effects of the DRT pricing schemes.

Compared with the base case, the variation of DRT volume in each urban district is
presented in Fig. 6(b)(c)&(d). Again, only trips between 8 am and 11 am are considered.
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(a) mode share of PT in Exp.bc (b) Exp. p 1.0 r 0.5

(c) Exp. p 1.0 (d) Exp. r 0.5

Figure 6: Changes in number of DRT trips in every districts during 8 am to 11 am (These numbers
refer to the 10% population sample.)

As a reference, the mode share value of public transport in each district in Exp. bc is
shown in Fig. 6(a), which can also be used as an indicator to estimate the level of public
transit service.

As expected, the effect of the penalty strategy is greater in areas with higher public transit
mode-share values. On the contrary, the reward strategy can effectively increase the DRT
demand in areas where public transit is not widely-used. In particular, by comparing
Fig. 6(b) and Fig. 6(a),a highly consistent rule in color can be observed. DRT usage drops
a lot in downtown districts and West Berlin where public transit mode-share is high. But
for the areas where, public transit is relatively less used, e.g., East Berlin and North Berlin,
only a slight reduction and even a rise of the number of DRT trips can be observed.

5.4 Mode shift effects

This section focuses on the mode shift effects brought by the DRT pricing strategy. The
results are depicted in Fig. 7, which shows the aggregated person-specific mode shift effects
of mode DRT resulting from comparisons between base and policy cases.

The data suggests that the penalty pricing strategy effectively encourages DRT users
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(a) from Exp. bc to Exp. p 1.0 (b) from Exp. bc to Exp. r 0.5

(c) from Exp. bc to Exp. p 1.0 r 0.5

Figure 7: Aggregated mode switch analysis of DRT trips from Exp. bc to policy cases. Trips that
do not interact with the DRT mode are not shown. Trips in which the transport mode remains
DRT are also not shown. The line width corresponds to the overall mode switch effect in both
directions, e.g. trips that are shifted from mode car to DRT minus the trips that are shifted from
DRT to mode car.
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to switch to public transportation. In the penalty strategy cases, DRT users switch to
public transit as well as to bicycle and walk and there are no additional DRT-to-car mode
shifts. The reward pricing has also, as expected, encouraged a large number of car users
to switch to DRT. As the penalty and reward strategies are both implemented in the
final case, 28,080 DRT trips were replaced with sustainable modes such as bicycle, public
transportation, and walking. Simultaneously, 8,370 car users switch to DRT, resulting in
a total combined reduction of 19,710 DRT trips.

The aggregated mode shift of all modes are depicted in Tab. 5. For each simulation
experiment, the mode-specific trip share considers only potential DRT trips (i.e., trips
inside the DRT service area).

For public transit, the reward strategy and the penalty strategy have a similar effect on
increasing its use, with 42,860 and 42,760 trips, respectively. When the two strategies are
implemented simultaneously, PT use increases even more, with 61,370 new public transit
trips representing an increase of 1.94%.

For private vehicles, the reward strategy had the most significant effect on its decline in
usage, which is in keeping with the original intention of the reward strategy to shift car
users to DRT by lowering the DRT price. The reduction of the number of car users is also
maintained in Exp.p 1.0 r 0.5. Compared with base case, , this scenario reduced car trips
by 48,390, which is similar to Exp. r 0.5’s reduction of 53,830 car trips.

The dynamic DRT pricing strategy directly encouraged only 8,370 car users to switch to
DRT, while an overall reduction of nearly 50,000 car trips is observed with the overall
mode counts analysis. This difference can be explained as the car was set as a chain-
based-mode in advance. In MATSim simulation, each sub-tour, i.e., trips chains starting
and ending at the same activity location, can be performed only with a chain-based-mode
like a car or a combination of other non-chain-based-modes. For example, agents in the
simulation must use a car to travel back from work to home if they had previously used
car to travel from home to work. Therefore, when one trip within the sub-tour switched
car to DRT due to the incentives offered in the reward strategy, the other trips in the
same sub-tour were also forced to shift from car travel to other modes. Moreover, the
results indicated public transit is more likely to be the alternative for the rest trips in the
sub-tour, as the number of PT trips is increased greatly by 61,370, while only 10% came
from DRT directly because of the penalty strategy.

Table 5: Modal split analysis

Exp.bc Compare with Exp.bc

total number p 1.0 r 0.5 p 1.0 r 0.5

bicycle 1,442,700 -9,590 -0.66% -26,050 -1.81% -10,710 -0.74%

car 2,735,990 -17,900 -0.65% -53,830 -1.97% -48,390 -1.77%

drt 243,070 -29,680 -12.18% +20,840 +8.55% -19,710 -8.08%

pt 3,172,870 +42,860 +1.35% +43,760 +1.37% +61,370 +1.93%

walk 3,076,190 +14,350 +0.46% +15,300 +0.50% +17,430 +0.56%
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5.5 Vehicle-kilometers traveled

By comparing the data in the Tab. 6, it can be seen that Exp. p 1.0 indeed has the
shortest DRT mileage, and the lowest VKT of car is also observed in Exp. r 0.5, as the
mode share indicates in Section 5.4. The most desirable VKT value, however, exists in
the Exp. p 1.0 r 0.5, where the penalty and reward pricing strategies are implemented
simultaneously. Here, the total VKT reaches 16,100,550km, which is reduced by nearly
3% compared with the base case.

Table 6: Vehicle-kilometers traveled (km)

bc p 1.0 r 0.5 p 1.0 r 0.5

Car 15,285,910 15,126,430 14,828,150 14,858,900

DRT 1,244,540 1,187,280 1,464,120 1,241,650

Total 16,530,450 16,313,710 16,292,270 16,100,550

5.6 Travel Time

Tab. 7 shows the change in travel time of several sets of mode shifts, e.g., from DRT to
PT and from car to DRT.

Table 7: Changes in average travel time (seconds) per trip

from to Change

drt pt +517.55 +37.19%

car drt +77.96 +6.24%

car car -3.18 -0.17%

drt drt -38.98 -3.23%

While the pricing strategies proposed in this paper, especially the penalty pricing strategy,
play a significant role in promoting DRT users to switch to public transit, travel times
increased as users switched modes. As shown in Tab. 7, the travel time for DRT users
switching to PT increased by an average of 517s, nearly 9 minutes.

Travel time for users switching from car to DRT increased by less than 80s, representing
only a 6.24% increase compared to the base case.

For users remaining within the car mode, the change in travel time per trip may be used
as an indicator for traffic congestion. The introduction of the pricing schemes showed a
slight reduction in traffic congestion, as travel times for car users decreased by 3.18s in
Exp. p 1.0 r 0.5 compared to the base case. A larger travel time reduction (40s, 3.23%)
was observed for the DRT mode.
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6 Discussion

In the following sections, we further explore the applicability of the proposed DRT pricing
approach to gain a better understanding of how to successfully implement it within existing
DRT systems.

6.1 Determination of computation parameters

The relevant parameters, i.e., the thresholds (φh,φl) and the factors (kpe, kre, klim) of
the penalty and reward pricing computation, should be determined in advance for the
calculation of the surcharge or discount of each DRT trip. The setting of these parameters
will then further affect the result of the final pricing strategy to a large extent. For
example, as a reference, the parameter setting adopted in this case study is more focused
on penalty strategy than reward, so that the reduction of DRT demand in the case of
developed public transportation is much greater than the increase with low-level public
transit conditions. Finally, as shown in Section 5.1, DRT operators suffer a certain loss
(-21,630.7 EUR) in their revenues.

However, given that the impact of both the penalty and reward strategies have successfully
met our expectations, it remains possible that with the right parameters a DRT operator
might be able to implement an incentive strategy that reduces urban congestion without
associated revenue loss. Alternatively, the parameters might be set to maximize DRT
operator revenue. In other words, the determination of those parameters should depend
on the purpose of the study or the interests of stakeholders.

As the impacts of the pricing parameters is closely related to the specific traffic charac-
teristics of each city, the emphasis of this study is on the overall price strategy and the
verification of its impact. The specific methodology to calibrate the parameters for a spe-
cific objective function is an important area for future research that is beyond the scope
of this paper.

6.2 The DRT base fare level

As described in Section 4.1, the DRT service implemented in this study is future-oriented.
With the introduction of autonomous vehicles, operational costs are expected to be signif-
icantly reduced to rates lower than the today’s DRT services. To reflect this potential cost
reduction, a low base fare of 0.35 EUR/km and a minimum fare of only 2 EUR per ride is
used.This raises questions about the effectiveness of the proposed DRT pricing approach
for today’s DRT fare levels. Therefore, further simulation experiments are carried out
with a higher fare levels of 1.5 EUR/km as distance-fare and 4 EUR as the minimum
fare per ride, which is in line with the fare setting of BerlKönig, a DRT service in Berlin
(high-base-fare scenario). All other settings are identical with the case study described in
Section. 4.1(low-base-fare scenario).

The results in the high-base-fare scenario are quite different from the previous low-base-
fare results. In the high-base-fare scenario, the reward strategy yields an increase of less
than 1500 (0.2%) DRT trips compared to the base case, whereas the low-base-fare scenario
yields an increase of 20840 (8%) DRT trips.

In the high-base-fare case, transport users who choose the rather costly DRT mode have
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no convenient public transit travel alternative. As a reference, the average φ in the base
case of the high-base-fare scenario is 3.02, while it is 2.26 in the low-base-fare scenario.
The reward strategy leads to reduced DRT fares that are therefore not sufficient to attract
many users as the low-level public transit service level is still set as the 80 percentile of
φ in this base case. Compare to the low-base-fare scenario, this setting will affect much
fewer travelers in the city.

To attract more travelers to the DRT mode, the threshold for the low-level PT service
quality must be reduced. This will, however, have two consequences: (1) revenues of the
DRT operator will significantly decrease and (2) there will also be large number users who
switch from public transit, walking and bicycle to the DRT mode which is considered as
an undesired effect.

In the high-base-fare scenario, the penalty strategy significantly reduces DRT demand (-
27.8%), however, the previous DRT users are observed to switch to car and not to public
transit; the number of car users increase by about 20,000 trips. That is, the proposed
DRT pricing scheme is not effective in the high-base-fare scenario as DRT services are
too expensive to compete with the public transit mode, in particular for daily commuting.
Since most DRT users have no convenient public transit travel alternative, the second best
option is to switch (back) to the private car mode. As DRT fares increase in the penalty
case, most DRT users make use of that option and switch to car.

The dynamic DRT pricing approach proposed in this paper will have a more significant
effect when the base fare of DRT is greatly reduced to the point that it becomes a viable
option for daily commuting. When applied to situations with the current, higher DRT
fare, the dynamic DRT pricing strategy should be based not on PT service quality but
rather other modes with which DRT directly competes, e.g., private car, traditional taxi,
or other DRT services providers.

7 Conclusion and outlook

In this study, an innovative DRT pricing strategy is proposed in which DRT fares are
corrected based on the quality of the alternative schedule-based public transit service.
This pricing strategy aims to reduce traffic congestion and to encourage a mode shift from
car to DRT as well as from DRT to public transit.

First, the relative public transit service level for each DRT trip is calculated as the ratio
of the predicted travel time by public transit and travel time by DRT. By comparing this
ratio with the pre-defined thresholds, DRT trips are classified as one of three public transit
service level categories: high-, mid-, or low-level PT service. For DRT trips belonging to
the high-level PT service level group, surcharges were applied to DRT fares to encourage
travelers to switch from DRT to public transit. For DRT trips in the low-level public
transit service category, DRT fares were discounted to encourage travelers to switch from
car to DRT.

In order to evaluate the impact of the proposed DRT pricing strategy on the DRT operator
and the overall urban traffic, the agent-based simulation framework MATSim is used
and several simulation experiments are carried out for the real-world case study of the
Greater Berlin area, Germany. The simulation experiments include one base case and
three different DRT pricing strategies.
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In Exp. p 1.0, only the penalty strategy is implemented, which significantly shifts DRT
users to public transit. An analysis of the temporal and spatial changes in DRT demand
shows a reduction in the number of DRT trips during peak hours and in the inner-city
area (see Section 5.2 and Section 5.3).

The effect of the reward pricing strategy is investigated in Exp. r 0.5. A mode shift from
car to DRT is observed in areas and times where public transit is underdeveloped. As
a result, the total number of car trips decrease by 53,830 compared to the base case,
while DRT trips increase by 20,840. Both shifts result in significant reductions in traffic
congestion.

In the final case (Exp. p 1.0 r 0.5), the two pricing strategies are implemented simultane-
ously. The combined impacts were larger than each strategy by itself, with an increase
of 61,370 public transit trips and a 3% reduction in car and DRT distance travelled (16
million km) compared to the base case. Although the total revenue for DRT operators is
reduced by 503,440 EUR in this pricing strategy, the unit revenue per trip (2.25 EUR) is
higher than in Exp. bc (2.22 EUR).

In general, the proposed DRT pricing scheme effectively provides a solution to the dilemma
how to control the mode shift effect and realize advantages of DRT services as a substi-
tute for private cars and at the same time avoiding the cannibalization of PT. As there
are already sophisticated applications to estimate the travel time across different traffic
modes, the proposed pricing approach may easily be incorporated into DRT smartphone
applications.

In future research, the methodology to calibrate the parameters of the proposed DRT
pricing approach can be addressed. Furthermore, the simulation setup will be extended to
account for situations in which DRT can be used as an intermodal mode of transportation
in combination with PT which allows for additional DRT fare correction strategies. An-
other next step is to apply the proposed DRT pricing scheme to investigate today’s DRT
services and explores ways to achieve the desired mode shift effect towards more efficient
and sustainable modes of transportation.
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