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Abstract

The backdrop for this thesis is the ongoing coronavirus pandemic. EpiSim is an agent-
based epidemiological simulation software, which was developed to simulate the virus’
spread and the impact of mitigation measures (e.g. mask-mandates, lockdowns, and
vaccinations).

The functional contribution of this thesis is the localization of EpiSim; the soft-
ware was extended to allow different regions within the study-area to have diverging
parameters that influence virus spread. This thesis introduces a location-based remain-
ing fraction, which allows pandemic-induced activity reductions (with respect to pre-
coronavirus mobility patterns) to vary between sub-regions of the study area. Residents
of one neighborhood could have a 20% reduction in leisure activities on a given day,
while an adjacent neighborhood could have a 30% reduction.

The functionality was tested on the 12 boroughs that make up Berlin, Germany. The
study’s time-frame was the second wave of infections that began in Fall 2020. The first
research focus was to see whether the localized EpiSim could better capture the actual
infection dynamics of Berlin’s boroughs; instead of using mobility reductions aggregated
on a city level, the reductions were differentiated by borough. Additionally, regionally
diverging average home-sizes were added to EpiSim and smaller homes were assigned
higher chances of infection. Neither of those modifications showed significant improve-
ments in capturing local infection dynamics. This indicates that mobility reduction and
home-size aren’t the best factors for explaining diverging dynamics between Berlin’s
boroughs.

The second research focus was to evaluate the impact of pinpointed lockdowns dur-
ing the second wave of infections in Berlin. EpiSim’s AdaptivePolicy was localized
such that individual sub-regions can be locked down (and opened up) independently of
other sub-regions. Restrictions are automatically applied if the incidence of a sub-region
surpasses a threshold. The adaptive policy with the most lenient parameters resulted in
62,000 fewer infections without the lockdowns being more restrictive than what occurred
in reality. Compared to a global adaptive policy, the local alternative was shown to be
particularly effective when the incidence threshold was low.
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Zusammenfassung

Der Hintergrund für diese Arbeit ist die aktuelle Coronavirus-Pandemie. EpiSim ist eine
agentenbasierte epidemiologische Simulationssoftware, die entwickelt wurde, um die Aus-
breitung des Virus und die Auswirkungen von Schutzmaßnahmen (z. B. Maskenpflicht,
Lockdowns und Impfungen) zu simulieren.

Der funktionale Beitrag dieser Arbeit ist die Lokalisierung von EpiSim. Die Software
wurde so erweitert, dass verschiedene Regionen innerhalb des Untersuchungsgebiets ab-
weichende Parameter aufweisen können, die die Virusausbreitung beeinflussen. In dieser
Arbeit wird eine ortsbezogene “remainingFraction” eingeführt, die es ermöglicht, die
pandemiebedingte Aktivitätsverringerung (im Vergleich zu den Mobilitätsmustern vor
dem Coronavirus) zwischen den Unterregionen des Studiengebiets zu variieren. Die
Bewohner*innen eines Stadtteils könnten an einem bestimmten Tag eine Verringerung
der Freizeitaktivitäten um 20% erfahren, während ein benachbarter Stadtteil eine Ver-
ringerung um 30% aufweisen könnte.

Die Funktionalität wurde anhand der 12 Bezirke von Berlin getestet. Der Zeitrah-
men der Studie war die zweite Infektionswelle, die im Herbst 2020 begann. Der erste
Forschungsschwerpunkt bestand darin herauszufinden, ob das lokalisierte EpiSim die
tatsächliche Infektionsdynamik in den Berliner Bezirken besser abbilden kann. Anstelle
der auf Stadtebene aggregierten Mobilitätsreduktionen wurden die Reduktionen nach
Bezirken differenziert. Außerdem wurde EpiSim mit regional abweichenden durchschnit-
tlichen Wohnungsgrößen ergänzt, wobei kleineren Wohnungen höhere Infektionswahr-
scheinlichkeiten zugeordnet wurden. Keine dieser Änderungen zeigte signifikante Ver-
besserungen bei der Erfassung der lokalen Infektionsdynamik. Dies deutet darauf hin,
dass die Verringerung der Mobilität und die Wohnungsgröße nicht die besten Faktoren
sind, um die unterschiedliche Dynamik in den Berliner Bezirken zu erklären.

Der zweite Forschungsschwerpunkt war die Bewertung der Auswirkungen von geziel-
ten Lockdowns während der zweiten Infektionswelle in Berlin. Die AdaptivePolicy von
EpiSim wurde so lokalisiert, dass einzelne Bezirke unabhängig von anderen Bezirken ges-
perrt (und geöffnet) werden können. Lockdowns werden automatisch angewendet, wenn
die Inzidenz eines Bezirkes einen Schwellenwert überschreitet. Die AdaptivePolicy mit
den mildesten Parametern führte zu 62.000 weniger Infektionen, ohne dass die Lockdowns
restriktiver waren als in der Realität. Im Vergleich zu einer globalen AdaptivePolicy er-
wies sich die lokale Alternative als besonders wirksam, wenn die Inzidenzschwelle niedrig
war.
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Chapter 1

Introduction

This Introduction gives a brief background of the coronavirus disease 2019 (COVID-

19) and the non-pharmaceutical interventions (NPI) that governments around the world

implemented. Following, the epidemiological simulation software used in and expanded

for this thesis will be presented: EpiSim. Then, the Introduction will lay out the two

research focuses and motivations for this thesis. The following two sections will present

the research questions and case studies corresponding to those motivations. The chapter

will be rounded off with an outline for the further chapters.

1.1 COVID-19 and NPIs

“Mr. Li is one of 59 people in the central city of Wuhan who have been

sickened by a pneumonia-like illness, the cause of which is unclear [1].”

This quote from the New York Times was published on January 6, 2020; the un-

known “illness” and “cause” were identified and named in a matter of weeks—coronavirus

disease 2019 (COVID-19) and severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2), respectively [2]. Containing the virus, however, proved to be more difficult; by

March 11, 2020, there were 118,000 reported cases of COVID-19 in 114 countries and

more than 4,000 people had died of the disease [3]. The director-general of the World

Health Organization (WHO) declared COVID-19 a pandemic and made the following

plea:

“We cannot say this loudly enough, or clearly enough, or often enough: all

countries can still change the course of this pandemic. If countries detect,

test, treat, isolate, trace, and mobilize their people in the response, those

with a handful of cases can prevent those cases becoming clusters, and those

clusters becoming community transmission [3].”
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At the time, pharmaceutical interventions—vaccines to prevent COVID-19 transmis-

sion and treatments to mitigate the disease’s effects—were not yet in development. In

fact, they are still unavailable for most of the world, as demonstrated in [4]. Thus, the

primary defence against COVID-19 was and potentially still is the implementation of

non-pharmaceutical interventions (NPI), which Perra [5] describes as: “a wide range of

both top-down (i.e., governmental) and bottom-up (i.e., self-initiated) measures aimed at

interrupting infection chains by altering key aspects of our behavior.” In January 2021,

Chinese authorities locked down the cities of Wuhan and Huanggang and restricted

travel to and from a total of 10 cities [6]. As seen in [7], most governments globally

had implemented some combination of NPIs by April 1, 2020. Implemented measures

include mask mandates, school closing, travel bans, stay-at-home restrictions, and bans

of public events. Google mobility data presented in [7] also shows that people spent a

lot more time at home and forwent recreation, education, work and shopping activities.

This reduction was attributable to to government interventions, as well as the decisions

of individuals seeking to protect themselves and their community.

1.2 EpiSim

A few weeks after COVID-19 spread in Germany, a research group at the Technische Uni-

versität Berlin (TUB) in Germany began developing an agent-based simulation software

(EpiSim) to track the development of COVID-19 cases and prognosticate the impact of

various government-imposed mitigation strategies [8]. For every simulated day, agents

complete a set of activities. If a susceptible and infectious agent meet at an activity

location or in public transit, there is a chance that the susceptible agent is infected.

To determine what activities an agent completes on a given day, we start with the

typical daily (pre-coronavirus) activity trajectories of all individuals living in the study

area. Due to government restrictions or personal decision-making, agents will only com-

plete a fraction of their pre-coronavirus activities: “Remaining Fraction” (Rf). The Rf

varies per activity type, and changes throughout the pandemic. The core-functionality

of EpiSim, as well as it’s applications, will be covered in Chapter 2.

1.3 Contributions

The fact that EpiSim is an agent-based model (ABM) allows infection dynamics to vary

between sub-populations; e.g. older agents are given more severe disease progressions

(e.g. higher likelihoods of needing hospitalization) and higher prioritization in vaccine

distribution. The goal of this master’s thesis is to further enrich EpiSim by allowing

infection dynamics to depend on the home or activity locations of agents.

The cornerstone of added functionality was the localization of the remaining fraction.
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EpiSim was extended to allow one sub-region of the study area to have a different

remaining fraction than another: “locationBasedRf.” On this basis, a local adaptive

policy was designed to dynamically restrict or open up an area based on the incidence1

of that area. The added functionality will further be described in Chapter 3.

The second contribution of this thesis is a set of four case studies, which make use

of the added functionality. There were two broad research focuses explored by the case

studies:

A) Improve EpiSim’s ability to capture the infection dynamics of individual geographic

regions within the study area.

B) Evaluate the merits of imposing localized lockdowns, wherein some regions are

restricted while others remain open.

The first research focus is geared towards improving EpiSim’s ability in capturing

the virus progression, while the second is geared towards expanding EpiSim’s toolbox

of policy recommendations to evaluate. The following two sections present the two

research focuses separately. In each section, the motivation for the research focus is

detailed and the corresponding research questions are developed. Each research question

is accompanied by a case study; the corresponding results will also be summarized.

1.4 Research Focus A: Local Infection Dynamics

Research focus A explores whether the addition of regional characteristics into EpiSim

will improve EpiSim’s ability to produce more accurate incidence curves for sub-regions

within the study-area.

1.4.1 Motivation

The first motivation of localizing EpiSim is to improve the model’s ability to capture

infection dynamics of sub-regions. While EpiSim simulations are calibrated to mirror the

actual infections and hospitalizations in a general study region, they do not necessarily

produce realistic infection curves for individual neighborhoods.

If the addition of neighborhood characteristics improves EpiSim’s ability to reproduce

the infection curves of individual neighborhoods, this can help researchers understand

how the virus spreads. These realizations could aid policy makers in improving and

focusing disease mitigation efforts. For instance, Endt et al. [9] show that Berlin boroughs

with higher unemployment rates also face higher infection curves. This information could

1Incidence indicates the number of weekly infections per 100,000 residents. This term will be fre-
quently used throughout this thesis.
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be used by the government to tailor its messaging or vaccination campaign to jobless

individuals.

Using the functionality developed as part of this thesis, two location-based factors

were added to the EpiSim simulation: activity reduction and home-size. The following

two subsections introduce two research questions (RQ), which explore the two added

factors.

1.4.2 A1: Localized Activity Reduction

In EpiSim, the daily mobility of agents must be scaled down with respect to the typical

pre-coronavirus daily activities. This is done by incorporating daily activity reductions,

gleaned from cell-phone mobility data, into EpiSim. In the standard EpiSim model, a

single value for activity reduction is applied to the entire study area (per day and ac-

tivity type). RQ A1 explores the application of different values of activity reduction for

different parts of the study area.

RQ A1: Does the addition of localized activity reductions improve EpiSim’s ability

to capture local infection dynamics?

Case Study A1 explores RQ A1 by applying different activity reductions to the 12

neighborhoods of Berlin. On a certain day, the borough of Spandau may reduce leisure

activities by 30%, while Mitte only reduces it by 20%. The borough-based activity

reductions were also gleaned from historical cell phone mobility data.

The results of Case Study A1 show that the inclusion of borough-based remaining

fractions did change the incidence curves of individual boroughs. However, these changes

did not systematically improve EpiSim’s ability to capture the boroughs’ infection dy-

namics.

1.4.3 A2: Localized Contact Intensity

As will be described in the Chapter 2, if an infectious person meets with a susceptible

person, the InfectionEventHandler calculates the chance of infection based on various

characteristics of the individuals involved. Another important variable in this calculation

is “contact intensity”; this describes the infection characteristics of the room in which

the agents meet, including the room-size and ventilation. In the standard EpiSim model,

the contact intensity for home events is equal for all agents. The next research question

attempts to localize EpiSim by applying varying home-sizes to different sub-regions, and

varying the contact intensity accordingly.

4



RQ A2: Does the inclusion of localized contact intensity for home activities (based

on varying home-size) improve EpiSim’s ability to capture local infection dynamics?

This research question was explored in context of Berlin with Case Study A2. The

average home size per person was available per lebensweltlich orientierter Raum (LOR),

a Berlin-specific planning unit of which there are 448 in the city. Case Study A2 assigns

the average home-size per person to all agents living in an LOR. New contact intensities

were then assigned to home events; agents with smaller home-sizes had higher contact

intensities (leading to a higher chance of infection).

The incidence curves of individual boroughs deviated insignificantly between the base

case and the policy case, where localized contact intensities were implemented. Thus,

the addition contact intensities based on home-size did not improve the simulation’s

ability to capture the infection dynamics of the boroughs.

1.5 Research Focus B: Local Lockdowns

The second research focus was the evaluation of localized lockdowns. This is meant to

expand the types of NPIs that EpiSim can model, in order to facilitate more diverse

policy recommendations.

1.5.1 Motivation

When I joined the EpiSim team in early 2021, there was a growing unhappiness with

ongoing lockdowns of uncertain length. In this context, alternative restriction regimes

were discussed, such as the no-COVID proposal. Bauman et al. [10] explain that the

goal of no-COVID is to eradicate COVID-19 through targeted lockdowns along with a

robust test-trace-isolate (TTI) program. The general idea of the no-COVID strategy

was to 1) use a hard lockdown to reduce the incidence; 2) remove restrictions step-wise

and use a vigorous TTI program to find all contacts of infected people and place them

into quarantine; 3) if the infections of an area surpass the capacity the TTI program, put

that region into lockdown, while allowing free movement in other areas [10]. People can

move freely within and between the unrestricted areas (“green zones”). Movement in to

or out of lockdown areas (“red zones”), however, is strongly curtailed. These green zones

are meant to expand progressively until they can encompass multiple countries [10].

Most countries that touted policies similar to no-COVID have since abandoned them;

in October 2021, New Zealand “gave up” on the goal of eradicating the virus within its

borders, partially due to the increased infectiousness of the Delta virus [11]. As this is

being written, China is the last country retaining this type of policy [12]. Although the

eradication of the virus may be untenable, pinpointed lockdowns may remain a promising

5



tool in keeping the virus spread in check.

Inspired by the red and green zones of no-COVID [10], research focus B attempts

to evaluate the merit of implementing local restrictions in an EpiSim simulation. The

central goal was to explore whether pinpointed restrictions can mitigate the extent of the

pandemic and/or reduce the amount of time people spend in lockdown, in comparison

to global restrictions.

1.5.2 B1: Pinpointed Lockdown

Before examining the effects of a local adaptive policy, we will evaluate the effects of a

single local lockdown. This is meant to demonstrate that reducing the location-based

remaining fraction of a sub-region has an impact on local infection dynamics. The first

research question is rather general; it’s goal is to check whether the pinpointed restric-

tions work as intended.

RQ B1: How does a local lockdown affect the infection dynamics of the restricted

region and the un-restricted regions?

Case Study B1 restricts the Berlin borough of Mitte for one month: October 2020.

The first purpose is to demonstrate that a pinpointed restriction has an effect on the

incidence curves of Mitte, as well as the other boroughs. Additionally, the goal of Case

Study B1 is to compare the effects of two restriction regimes: a) locking down residents of

Mitte from conducting leisure activities and b) preventing all Berliners from conducting

leisure activities within Mitte.

The results from Case Study B1 show that a local lockdown in Mitte (for both re-

striction regimes) significantly reduces infections in Mitte itself; however, other boroughs

are also have reduced infections. As to be expected, the non-restricted boroughs benefit

more (in terms of reduced infections) from regime b, which bars Berliners from entering

Mitte to complete leisure activities.

1.5.3 B2: Local Adaptive Restrictions

The final research question attempts to explore the effects of a local adaptive policy,

which was a functionality introduced by this thesis. If the incidence in a borough sur-

passes a threshold, a lockdown is imposed in that borough; residents of other boroughs

are free to continue completing activities (corresponding to regime a from the previous

subsection). This policy only partially matches the no-COVID proposal; the local adap-

tive policy still allows residents of unrestricted regions to enter restricted regions.
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RQ B2: How does a local adaptive policy affect incidences and time uses, compared

to a global adaptive policy? How do the parameters of the adaptive policy affect its ben-

efit?

RQ B2 evaluates one benefit and one cost of the local adaptive policy. The benefit is

a reduction in incidence. The cost is a reduction in time-use: the amount of time people

spend outside of their homes each day.

Case Study B2 explores the application of a local adaptive policy in Berlin during

the second wave of the coronavirus. The case study varies two parameters regarding the

automatic lockdowns: the threshold at which a lockdown is imposed or lifted (“Trigger”)

and the percentage of activities can still take place during a lockdown (“Remaining

fraction for restricted policy”). The local adaptive policy was first compared to the base

case: the standard EpiSim model which is calibrated for Berlin to match the actual

historical incidences. The local adaptive policy is also compared to the global adaptive

policy—wherein all of Berlin is locked down if the Berlin-wide incidence surpasses a

threshold—to examine at what parameters the local policy is beneficial.

The results for Case Study B2 show that both the local and global adaptive policies

reduce more infections with the more stringent parameters: lower Trigger and lower

Rf. This benefit is offset by the social cost of the more stringent policies: people spend

less time outside of their homes every day, on average. The most lenient adaptive

restrictions are most efficient in terms of this cost-benefit relationship; they significantly

reduce infections, while barely reducing the amount of time people can spend outside of

their homes. Finally, the results of Case Study B2 show that the local adaptive policy

performs best in Berlin, as compared to the global one, when the Trigger is low.

1.6 Outline

This chapter has laid out the motivations for this thesis. It has also introduced the

research questions and corresponding case studies, which will be explored in this thesis.

Chapter 2 will introduce epidemiological simulations in general. It will then give an in-

depth description of how EpiSim functions, and show how it can be utilized to explore

the research questions presented above.

The Methodology (see Chapter 3) aims to highlight the software contributions of

this thesis. It will also describe how the four case studies were prepared. The results

of the case studies will be described in Chapters 4 and 5. Chapter 4 presents the case

studies for research focus A, while Chapter 5 presents the results for research focus B.

Both chapters end with a discussion. The paper is rounded off with a Conclusion (see

Chapter 6), which summarizes the work in this thesis and gives a general outlook.
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Chapter 2

Modelling Background

The first section of this chapter gives a brief history of epidemiology and different model

types utilized by it. The following sections describe EpiSim, the epidemiological simu-

lation software used in and expanded upon as part of this thesis.

2.1 Epidemiological Models

Whereas most medical sciences study disease in individuals, epidemiology studies how

disease propagates within groups of humans; it examines what factors lead to the spread

of infections and what mitigating measures can be implemented [13]. Mulner [13] de-

scribes that many regard the birth of modern epidemiology to stem from London, during

the 1854 cholera outbreak. John Snow, a physician, found that cholera victims’ homes

were clustered around a public drinking fountain; thus, he hypothesized that the infec-

tions were caused by contaminated drinking water [13].

John Snow used rudimentary spatial analysis in his epidemiological research, meaning

he drew dots on a map to identify clusters [13]. Since then, the capabilities of models

have significantly increased. Luyao et al. [14] discuss three general types of disease

spreading models: A) statistical models that use regression or machine learning to predict

spread—these models can generally only make short-term predictions and aren’t very

sensitive to interventions; B) equation based models, which aggregate the population

and use complex differential equations to model spread between them; C) an agent-

based model (ABM), which can depict a more heterogeneous population with complex

social interactions. As EpiSim is agent-based, ABMs will be described in greater detail.

An agent-based model (ABM), as described by [15], runs simulations on a hetero-

geneous population. They can simulate how synthetic individuals (“agents”), who have

different demographics, interact with each other and the environment. Gilbert and

Troitzch [16] define agents as having autonomy, social ability, reactivity, and proactivity.
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Thus, ABMs can portray more realistic movement and contact patterns than equation

based models, which generally assume uniform mixing [15]. This allows epidemiological

ABMs to zoom in on individual infection chains or examine the infection dynamics for

particular sub-groups.

ABMs are frequently used in the context of epidemiology. For instance, Merler et

al. [17] developed a spatial ABM to predict the spread of Ebola virus in Liberia. It

allowed them to differentiate between transmission rates at/in funerals, hospitals and

households. The researchers [17] could then estimate the effect of NPIs in combating the

spread of Ebola in those locations. In a study by Zhou et al. [18], a combination of an

ABM and a susceptible-exposed-infected-recovered model is used to show that COVID-

19 transmission patterns vary throughout the city of Guangzhou, China. The authors

[18] find that immunity rate required to end the pandemic is spatially heterogeneous (i.e.

higher rate required in urban center). Furthermore, if the supply of vaccine is limited,

the most efficient distribution involves spatial (as well as age-based) prioritization [18].

2.2 EpiSim Overview

EpiSim [8] was developed at Fachgebiet Verkehrssystemplanung und Verkehrstelematik

(VSP)—english: the Department of Transport Systems Planning and Transport Tele-

matics—at the Technische Universität Berlin (TUB), which is led by Dr. Kai Nagel.

Before COVID-19 arrived in Germany, the team primarily worked on software devel-

opment of an agent-based transport model, MATSim [19]. This software is used to

simulate the mobility of synthetic individuals in a study region. MATSim is primarily

used to simulate the effects of different mobility developments; for instance, changes to

infrastructure (i.e. bike highways [20]), changes to policy (i.e. congestion pricing [21])

or the introduction of new forms of mobility (i.e. shared taxis or “demand responsive

transit” [22]).

The output of a MATSim simulation is an events file for a typical pre-coronavirus

day; this contains the activities each individual completes (including where, what, when,

and with whom), as well as how they traveled between those locations [19]. This was

an invaluable starting point for developing an epidemiological simulation because the

places where people meet are also the places where people can become infected. Once

COVID-19 became relevant in Germany, VSP was able to put together an epidemiological

simulation software (written in Java) based on these activity chains and real-time data

within two weeks [8].
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2.3 Simulation Setup

At the beginning of an EpiSim simulation, various input files have to be imported and

the settings must be configured. Doing this manually for each simulation would be

work-intensive and prone to human-error. Thus, each study area has a separate class, a

so-called “production scenario,” which sets all the regionally applicable input files and

default configuration values. For instance, the school vacation periods would be dif-

fer between Berlin and Cologne (the class SnzBerlinProductionScenario is used for

Berlin). The following subsection describes the input files that the production scenario

reads before the simulation begins. Afterwards, the data structure containing the con-

figuration options—episim-config—will be introduced. Finally, the way in which activity

reductions are configured will be detailed.

2.3.1 Inputs

Below, I introduce the most important input files for an EpiSim simulation.

Population and Facilities Inputs: EpiSim has agents that move about the city,

and meet in facilities to complete activities (where there exists the chance of infection).

As EpiSim is an ABM, each individual and each facility can have different characteristics

which influence infection dynamics. Within the production scenario, a population file

is imported: this contains the demographic information for every individual simulated

in EpiSim. In the standard Berlin model, this includes age, sex, and details to their

home: longitude and latitude, facility ID, and county. The ability to integrate this

demographic information into the simulation makes this ABM powerful; e.g., for age-

prioritized vaccine distribution strategies, the age of an individual is read from the

population file to determine eligibility. Similarly, the facilities file enriches the model by

providing information about each activity location: the longitude and latitude, as well

as information about what activities can occur in that location.1

Events Files: Vital to EpiSim is the mobility behavior of individuals; three event

files must be imported that show a typical weekday, Saturday, and Sunday. These are

generated by filtering the MATSim output events to only contain events relevant to the

epidemiological simulation. If an agent travels per public transit, we know when they

got on and off the vehicle and the ID of that vehicle. When the agent conducts an

activity, we know the activity type (e.g. home, leisure, work), the activity location, and

the time-frame. During the simulation, the contact model can use this information to

detail all the contacts between individuals, whether in a bus or university class. Within

1The standard facilities and population files do not specify what Berlin borough the locations are in.
Home-size is also not included by default. This information is required for the case-studies; the addition
of these parameters will be described in Chapter 3.
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the events files, IDs of the involved agent, activity facility, or public transit vehicle are

specified. These IDs can be matched to the population and facilities files, to extract

pertinent information.

Activity Reduction: While the events files provide the typical daily plans of indi-

viduals, an activity reduction input is required to scale back mobility during the coro-

navirus pandemic. Every day, VSP is provided with mobility data from cell-phone

providers. The information includes the number and average duration of activities (for

various activity types) that residents of a given zip-code complete on a given day. The

class AnalyzeSnzData aggregates this data for a given study area, and calculates the

daily activity reductions, as compared to a pre-coronavirus baseline. As will be shown

in Section 2.3.3, these activity reductions will be incorporated into the Restrictions

for certain activity types.

2.3.2 EpiSim Configuration

EpiSim is designed to be extensively configurable and extendable. The class EpiSim-

ConfigGroup specifies most of the aspects of EpiSim that can be configured by the user.

Based on this class, a container called the episim-config is created, which holds the pa-

rameters and options selected for a given run. It includes parameters relevant to simula-

tion mechanics, such as the simulation start-date and what outputs should be produced.

It also includes parameters relevant to infection dynamics, including SARS-CoV-2 sus-

ceptibility and infectivity. Infectivity describes the degree to which the infectious host

can cause new infections while susceptibility describes the likelihood for the susceptible

agent to contract the disease [23]. These parameters are configured in the episim-config

container for different age groups. The episim-config also specifies how many individuals

are infected with SARS-CoV-2 at the beginning of the simulation.

Nested within the episim-config are two very important configuration groups. The

progression-config specifies the transition probabilities between different disease states:

i.e. what percent of young adults will become “seriously sick” after “showing symptoms”

for 4 days. It also includes the policy-config, which specifies how restrictions will be ap-

plied to the population throughout the simulation (see Section 2.4.3). These restrictions

can be set at the beginning of the simulation—“Fixed Policy”—or imposed during the

simulation based on simulated incidences—“Adaptive Policy” (see Section 2.3.3).

2.3.3 Policy

As described earlier, the episim-config contains a policy-config, which specifies how ac-

tivity restrictions will be applied to the population throughout the simulation. To begin,

the Restriction container will be described. This is a basic data structure that con-
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tains activity reduction information. Afterwards, two types of restriction policies will be

described: FixedPolicy and AdaptivePolicy.

Restriction: The activity reduction information is stored in a data structure called

Restriction. One Restriction container is applicable to one activity type; the Res-

triction generally applies for one week.2 Within the Restriction, the remaining-

Fraction field dictates what percent of activities will take place that day. On a given

day, the remainingFraction for work activities could be 66%, meaning that one third

of work events will be skipped. The Restriction container also contains information

on mask usage—what percent of people wear what type of mask—maximum group

sizes, whether activities locations close early or are closed altogether. The policy-config

specifies how the Restriction container is filled.

Fixed Policy: The fixed policy is the standard policy used in EpiSim simulations.

Therein, all Restriction containers are created and filled at the beginning of the sim-

ulation. For a work or leisure Restriction, the remainingFraction is filled using the

activity reduction data from the cell-phone providers. The production scenario delegates

the task of reading the activity reduction input files to CreateRestrictionsFromCSV,

which then populates the remainingFraction field of each Restriction. This class

can also extrapolate the activity reductions into the future, where no cell phone data is

available. For educational activities, the remainingFraction is generally set manually

within the production scenario. If schools are closed due to holidays or government

lockdowns, the remainingFraction within the Restriction containers for educational

activities is set to 0.0.

Adaptive Policy: As shown above, the fixed policy defines activity restrictions at

the beginning of the simulation. In contrast, the adaptive policy can change restrictions

during the simulation based on the current incidence. There are three predefined restric-

tion states: initial, open, and restricted. Each state sets one Restriction per activity

type. A Restriction for the restricted phase should have a lower remainingFraction

than the Restriction for the open phase.

The initial policy is applied at the beginning of the simulation. If the incidence

surpasses a certain threshold (“restricted-trigger”), the restricted policy is implemented.

Then, if the incidence stays below a certain level (“open-trigger”) for a set number of

days (default is two weeks), the open policy is applied. The triggers can differ between

activity types, which means that the Restriction for the initial phase could be in

effect for educational activities, while the Restriction for the restricted phase could be

simultaneously active for leisure activities. Additionally, the open-trigger and restricted-

2This time-frame could also be shortened, e.g. to apply different reductions for holidays.
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trigger for a given activity type can differ from one another.

2.4 EpiSim Simulation

So far, the scenario preparation process has been described; the episim-config data struc-

ture, the various inputs, and the restriction policies have been detailed. Now, it is time

for the simulation to begin. At the beginning of the simulation, a random set of indi-

viduals is infected. The class EpisimRunner iterates through all the days (iterations) in

the simulation. One simulated week involves replaying the weekday events five times,

followed by the Saturday events and, finally, the Sunday events.

At the beginning of each day, there is a certain initialization phase: e.g. vaccinations

and tests are administered to portions of the population. This is also where the disease

progression model changes the disease states of individuals (see Section 2.4.3). Based on

transition probabilities, some infectious individuals will e.g. start showing symptoms or

some seriously sick individuals will recover.

At the beginning of a day, the DefaultParticipationModel ascertains which ac-

tivities should be skipped. Since the events file corresponds to pre-coronavirus activity

trajectories, a certain portion of planned daily activities should be removed due to

pandemic-induced mobility reductions. For each event in the day’s events file, the ap-

plicable remainingFraction is extracted from the Restriction for the activity type

and date in question. A random number between 0.0 and 1.0 is then generated; if it lies

above the remainingFraction, then the activity will not occur on this date. Thus, for

a remainingFraction for work of 66%, e.g., one third of all work activities on that day

will not occur, on average. If an activity is skipped, then the associated public transit

travel to that activity will also not be realized.3

Each day is simulated as follows: the corresponding events file is replayed minute-

by-minute, by processing the events chronologically. Episim [8] predicts daily infection

dynamics using three interlocking sub-models: the contact model identifies situations

where agents meet; given an agent is infectious, the infection model predicts whether

SARS-CoV-2 is transmitted to a susceptible agent; if an agent is infected, the disease

progression model determines the course and severity of the disease. These models will

be described in the following subsections.

3This is the process when the episim-config option of activityParticipation is set to “startOfDay.”
If, instead, it is set to “duringContact,” the activity participation for a given day is ascertained in the
contact model. This is computationally less efficient than the process described here.
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2.4.1 Contact Model

The DefaultContactModel starts the day with a set of empty containers, corresponding

to all the enclosed spaces where agents can meet (activity facilities and public transit

vehicles). The ReplayHandler class then replays all the events that occur in a day in

chronological order.

If an activity occurs (as specified by the DefaultParticipationModel), the Default-

ContactModel will then add the agent in question to the corresponding container. When

the events file specifies that an agent ends an activity, the DefaultContactModel checks

whether at least one person in the container is susceptible and one is infectious. If so,

this agent-pair is passed along to the InfectionEventHandler, which will check whether

an infection actually occurs. This same process also occurs when an agents enters or

leaves a public transit vehicle [8].

2.4.2 Infection Model

If the contact model renders that a contagious person met with a susceptible person,

the infection model calculates the probability that an infection occurs. A mechanical

infection model developed by Smieszck [24] [25] is used in EpiSim. The equation used

in EpiSim to calculate the probability of infection along with a detailed explanation can

be found in [8]. The following is a simplified version, which is useful for explanatory

purposes:

p(infect|contact) ≈ Θ× sh× ci× in× τ

As detailed in [8], the “shedding rate”, sh, is the viral load that the infected person

produces through exhalation; this is dependent on what stage of the disease the person

is in and whether they are wearing a mask. Conversely, the “intake rate”, in, is how

much viral load a susceptible agent breathes in, which is also dependent on mask-usage.

Age-dependent susceptibility and infectivity, which were defined in the episim-config,

also play a role in the shedding and intake rates. The “contact intensity”, ci, describes

the concentration of the virus in the air, and is dependent on the size of the room and

how much air exchange takes place (i.e. through the opening of windows). Finally, the

duration of contact (τ) is an important factor, which can be gleaned from the activity

trajectories. The calibration factor, Θ, is determined through model calibration; this

also absorbs all units of the individual factors. All of this together predicts whether

susceptible individuals become infected with SARS-CoV-2 during an interaction with

an infectious person. This explanation was paraphrased from [8].
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2.4.3 Disease Progression Model

After an agent is infected by SARS-CoV-2, the disease progression model is used to

determine if and when certain disease stages occur. When the infection model reports

that a susceptible person is infected, the agent will initially be assigned the state of

infectedButNotContagious.

At the beginning of each iteration (simulated day), there will be a certain chance

for the infection state of the agent to change. The worst possible progression would

be as follows:4 infectedButNotContagious → infectious → showingSymptoms →
seriouslySick → critical → seriouslySick → recovered. However, starting with

infectious state, there is always a chance of becoming recovered. The progression

model uses age-dependent transition probabilities to determine whether the agent moves

on to a more dire phase or to the recovered phase. The progression model also sets the

duration of each phase based on medians and standard deviations found in the literature.

The agent can only infect other agents in the infectious state or within the first 4 days

of the showing symptoms state; in later states, it is assumed that the agent is either

isolating at home or in the hospital. Readers wanting more information on the sources

of the transition probabilities are encouraged to read Section 2.3 of [8].

2.5 EpiSim Outputs and Analysis

All infections and disease state changes are documented by EpisimReporting. This

class is used to produce the output files useful for analysis. One of the most important

outputs created is infections.txt, which documents the infection state counts for each

date and each county: e.g. number of individuals who are susceptible, infected but not

contagious, contagious, seriously sick, recovered, quarantined, tested, vaccinated, etc.

Other important outputs of EpisimReporting include the prevalence of different virus

strains and timeUse.txt: how many minutes individuals spend outside of their homes

per day.

Both infection dynamics and political discourse are in constant flux; for EpiSim

to make an impact on decision-makers, the turnover must be rapid. Covid-Sim is a

visualization tool that was developed to synthesize and plot the outputs of hundreds or

thousands of simulations. The user simply uploads the output files to a server, and then

can immediately visit a custom URL to see their results. The website is populated with

an array of plots that show, e.g., incidence, hospitalizations, virus strains, and testing

rates for a given scenario. As shown in a screenshot of Covid-Sim (See Figure 2.1), the

user can change the parameters on the left side of the screen, to see how the results

4There is no death in EpiSim.
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Figure 2.1: Web Interface of Covid-Sim: The upper left panel (“General Options”)
shows three variables of an illustrative case study, each with several options. The right
side shows incidence plot corresponding to the selected options (scrolling down would
reveal more plots). The screenshot, taken on December 9, 2021, corresponds to case
study B2 of this thesis: https://covid-sim.info/jakob/master/b2

change.

Readers are encouraged to visit https://covid-sim.info to view recent simulation

results and read the corresponding reports.5

2.6 Uses of EpiSim

The last subsection presented Covid-Sim, which allowed the rapid visualization of Epi-

Sim’s outputs. There are several aspects of EpiSim that make it suitable to the ever-

changing conditions of the pandemic.

First, EpiSim efficiently stays up-to-date by using dynamic data, as described in [8].

Primarily, the activity reductions of individuals—self-initiated and due to government

interventions—is calculated on a daily basis using cell-phone provider data. Secondly,

the number of infectious people entering the study area every day (“disease import”)

varies throughout the year, due to e.g. vacation times or travel restrictions. Thirdly,

the adherence to mask mandates also varies year-round. Finally, the weather and tem-

perature changes seasonally, which has an impact what proportion of activities occur

outdoors (lower chance of infection) [8]. The ever-changing base of data can be easily

inputted into EpiSim, allowing current epidemiological situations to be shown.

5The Covid-Sim links will be posted as footnotes for each case study in the results: Chapters 4 and
5.
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Also, the mechanical interactions between agents in EpiSim allow new policy proposal

to be quickly integrated into the software: e.g a rapid testing program. At the beginning

of a simulated day, a portion of the population is tested; the infection status of each

individual is checked, and the “test result” is attached as attribute to the agent (some

test results will be false negatives). A positive test result could lead to the application

of a follow-up PCR test or a quarantine for the individual. Since each agent has certain

attributes, the testing program can also be applied differently between sub-populations;

e.g. school children are tested three times a week, while adults only get tested once.

Due to its data-driven and mechanical nature, EpiSim was able to be at the fore-front

of political and epidemiological debates in real-time, particularly in the context of Berlin.

The VSP team submitted its first report [26] to the German Ministry of Research on

April 8, 2020, where the effects of school closures were examined. Since then, VSP has

consistently delivered reports on COVID-19 development and policy recommendations

every couple of weeks [8]. The next two reports incorporated mask-usage [27] and contact

tracing programs [28].

Over the winter of 2020/2021, two major factors with opposing impacts were added:

vaccination strategies [29] and a new variant of concern (VOC): B.1.1.7 [30]. In the new

year, curfew options were explored [30] as well as rapid testing strategies [31]. As the

thesis is being written, booster vaccines are being simulated [32] and a new study region

is being explored: Cologne [33]. VSP’s research findings, which use EpiSim, have been

cited in Germany’s supreme court ruling on the constitutionality of government-imposed

lockdowns [34].

2.7 Discussion

This overview of research applications is meant to show that EpiSim is actively used to

report on the ever-developing coronavirus progression and provide policy recommenda-

tions. The software design is also well-suited to explore the research questions proposed

in Chapter 1. The trajectory of this thesis is to localize coronavirus projections and

recommendations by varying infection dynamics by the home or activity locations of

individuals. In the following chapter, EpiSim will be shown to be readily expandable

to meet this goal. On the one hand, it is agent-based; the home and activity locations

are known for each individual. On the other hand, there is plenty of data available on

neighborhood characteristics. For instance, the cell phone mobility data is available on

a zip-code level; while this is aggregated on a city scope in the standard EpiSim model,

it can also be aggregated on a neighborhood basis.

The following chapter will describe the functionality added as part of this thesis, as

well as show how the case studies are set up.
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Chapter 3

Methodology

The contributions of this thesis are of two types: 1) added functionality to EpiSim and 2)

applications of that functionality in the form of case studies. This chapter is split up in

this same manner; first, the software extensions are described and then the configuration

and setup of the four case studies will be detailed.

3.1 Functionality

With the aim of localizing EpiSim, the research for this thesis produced two main func-

tional expansions to the software. The centerpiece of thesis is the location-based re-

maining fraction, which allows for differentiated activity reductions depending on an

individual’s home or activity location. Building on that, the second significant expan-

sion was to localize the AdaptivePolicy, allowing dynamic restrictions to be applied to

sub-regions of the study area.

3.1.1 Location-Based Remaining Fraction

As described in Section 2.3.3, the “Remaining Fraction” is the percent of activities

people perform on any given day, compared to the pre-pandemic times. The reduction

of activities is influenced by government mandates, as well as personal risk-mitigating

decisions. Previously, there was a global daily remaining fraction value that would be

applied to the entire study area. With the addition of location based remaining fractions,

differing activity reduction could be applied depending on the home or activity location.

While the following case studies split up Berlin into 12 boroughs, this functionality can

be applied to any type of geographic scope: e.g. zip-code, neighborhood, state, country,

etc.

As described in Section 2.3.3, the container that holds the remaining fraction for

a given day and activity type is Restriction. To allow for different sub-regions to
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have varying remaining fractions, a new component was added to the Restriction

container: locationBasedRf. This data structure (a “map”) can be filled with location-

based restrictions; each sub-region’s name linked with the corresponding local remaining

fraction. The manner in which this novel data-structure is filled will be described in detail

later in this chapter, when the case studies are presented.

Section 2.4 described how the DefaultParticipationModel determines which ac-

tivities an individual completes or skips at the start of each day (iteration). This

is done based on the remainingFraction. To force the participation model to use

the local remaining fractions instead of the general ones, a new class LocationBased-

ParticipationModel was introduced. This checks the episim-config to see which option

for “DistrictLevelRestrictions” is active.1 If “no” is selected, the global remaining frac-

tion is used and the locationBasedRfs are disregarded. If yesForActivityLocation is

active, the participation model checks whether the activity’s location is within one of

the boroughs; if so, the remaining fraction for that borough is used instead of the global

remaining fraction. If, instead, yesForHomeLocation is turned on, the same process

occurs using the home location of the individual in question.

For the participation model to know what borough an individual’s home or activity lo-

cation is in, we need to attach the corresponding borough to each individual and each fa-

cility, in the population and facilities files, respectively. For this purpose, two classes were

written: DistrictLookupBerlinPopulation and DistrictLookupBerlinFacilities.

They both function as follows: A) read a shape file of German zip-codes; B) for each

location (home or facility), match the coordinates to the corresponding zip-code; C) if

a zip-code is part of one of Berlin’s boroughs, assign the corresponding borough to the

location. The borough name is added as an attribute to each individual or facility in the

population and facilities files, respectively. The name of the attribute is stored in the

episim-config, so that the LocationBasedParticipationModel knows where to look to

find borough information (“subdistrict” is the attribute name used in this thesis).

3.1.2 Local Adaptive Policy

The global adaptive policy, as introduced in Section 2.3.3, institutes a lockdown in the

entirety of Berlin when the incidence surpasses a threshold. The local adaptive policy,

which was developed as part of this thesis, institutes a targeted lockdown in an individual

city borough if the incidence of that borough surpasses a threshold.

To calculate the incidence of a borough, the number of infections that occur in that

borough must first be recorded. While EpisimReporting is already set up to keep

1EpisimConfigGroup had to be modified to hold configurations options relating to location-based
restrictions; DistrictLevelRestriction is one such addition.
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track of the county-level infections, it had to be modified to also record infection states

for different scopes. The class was modified to record infection states for each date and

borough.2 EpisimReporting provides this information to the AdaptivePolicy, to allow

it to calculate incidences of the individual boroughs.

A new configuration option was added to the configuration of the class Adaptive-

Policy: restrictionScope. If set to “local”, the AdaptivePolicy will apply restric-

tions on individual boroughs of Berlin instead of the city as a whole. At the beginning

of each iteration, the AdaptivePolicy calculates the incidence for each borough using

the infection data provided by EpisimReporting. If the borough is either in its initial

state or open state, and the incidence surpasses the pre-defined threshold, then the bor-

ough will be placed in the restricted state. This causes the borough’s remaining fraction

within the map locationBasedRf to be replaced by the restricted remaining fraction,

as specified in the adaptive policy configuration. Conversely, if the borough is restricted

and the incidence is below the incidence threshold (for a certain period of time), the

open remaining fraction will be applied.

EpisimReporting was also modified to create a new output file, adaptiveRestric-

tions.tsv, which reports the restriction status (initial, open, or closed) for each day,

borough, and activity type throughout the simulation.

3.2 Case Studies

In order to address the four research questions posed in Chapter 1, four case studies were

designed. This section describes the study area and time-frame for the case studies. It

will give a general description of how the run classes for the case-studies are set up.

These are needed to start the simulation. Following, Sections 3.3 and 3.4 will present

the unique configurations of the four case studies.

3.2.1 Study Area and Time-Frame

Berlin, the capital of Germany, was chosen as the study-area for the case studies pre-

sented in Chapters 4 and 5. The main reason Berlin was chosen is that the VSP team

had already created and calibrated an EpiSim scenario for the city. Thus, the time al-

lotted for this master’s thesis could be spent expanding EpiSim, rather than calibrating

a scenario for a different city or region.

Figure 3.1 shows the city of Berlin, including the 12 administrative boroughs that

it is composed of. The city-wide population is over 3.7 million; the population of the

boroughs range between 245,000 (Spandau) and 410,000 (Pankow) [37]. If these boroughs

2This information is also saved as an output—subdistrict infections.txt—to be used for analysis after
the simulation is complete.
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Figure 3.1: Study Area—Map of Berlin: Map of 12 administrative boroughs that
make up Berlin, CC BY-SA 3.0 [35]
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Figure 3.2: Incidences in Berlin—Time-Frames of Case Studies: Case Studies A1
and A2 examine the time-frame indicated by the light blue rectangle: February 25, 2020
to February 19, 2021. Case Studies B1 and B2 only examine the period encompassing
the second wave of infections, which is indicated by the red shading: July 18, 2020 to
February 17, 2021. Data retrieved from [36].
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were cities themselves, they would each be considered a “Großstadt”—large city—in

Germany [38].

The simulations in the four case studies each ran 360 iterations. The first simulated

day was February 25, 2020 and the final day was exactly 360 days later: February 19,

2021. For the results presented in Chapter 4 (case studies A1 and A2), the entire study

frame is examined (see blue rectangle in Figure 3.2). For Chapter 5 (case studies B1

and B2), a shorter time frame was selected: the period encompassing the second wave

of infections. The study period is flanked by the days with lowest recorded incidences

on either side of the second wave: July 18, 2020 had an incidence of 3.2, while February

17, 2021 had incidence of 54.7 (see red area in Figure 3.2).

3.2.2 Run Class Setup

Each case study has a unique run class, but we will begin by describing the parts that

are the same for all case studies. Each run class starts by initializing the SnzBerlin-

ProductionScenario, which sets up a Berlin scenario and populates the episim-config

with default values for Berlin. This is where the activity reduction input file is read

and processed to fill the Restrictions; it also includes, e.g., vacation times, weather

patterns, lockdowns of schools, and vaccination rates.3 For computational purposes, the

sample size is set to 25%; this means that only a quarter of the population of Berlin is

simulated. The results presented in Chapters 4 and 5 scale all outputs back up to 100%.

The run classes are generally set up to run a batch of simulations; this allows users

to compare the results of simulations with varying configurations. Thus, each run class

contains a “Parameters” section: here, the parameters are defined, and the arguments

for each parameter are specified.

For example, if batch of simulations was meant to evaluate a nightly curfew, one

important parameter could be the time at which the curfew begins. There could be

three arguments for start time: 18:00, 20:00, and 22:00. Another parameter could be

the percentage of the population that adheres to the curfew. The arguments for curfew

compliance could be 60% and 80%. In order to compare every combination of those two

parameters, the run class would produce 6 scenarios.

There are stochastic processes in EpiSim, which influence the simulation results.

When comparing the results of two scenarios, we want to be sure that differing incidence

curves can be attributed to difference in the arguments rather than stochastic effects.

Thus, we run each scenario multiple times with different random seeds. Going back to

the nightly curfew example, 6 scenarios with 10 seeds each would result in 60 simulations.

3As part of this thesis, a new section was added to SnzBerlinProductionScenario to allow new
localized input files to be read: events, population, and facilities.
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After all simulations are have run, the 60 sets of results will be aggregated back down

to the 6 scenarios.

Each of the following two sections corresponds to one research focus, presented in

Sections 1.4 and 1.5. Each research focus is associated with two research questions. A

total of four case studies were designed to answer the four research questions. Each of

the case studies will explore different parameters and arguments, which will be presented

within the respective subsections. All case studies are run with 10 random seeds.

The localized functionality of EpiSim is located on the “locationBasedRestrictions”

branch of the software on GitHub.4 Simulations were run using the commit version

a7988322f0994471b0f00ca7b31021d35487a179 on the same branch.

3.3 Research Focus A: Local Infection Dynamics

As described in Section 1.4, research focus A explores EpiSim’s ability to capture the

infection dynamics of sub-regions within the study area. The two research questions ask

whether the addition of localized activity reductions (RQ A1) or localized contact inten-

sities (RQ A2) yield more accurate incidence curves for the sub-regions. The following

subsections present the case studies designed to answer these two research questions.

3.3.1 Case Study A1: Localized Activity Reduction

As outlined in Section 1.4.2, Case Study A1 is designed to answer the following research

question:

RQ A1: Does the addition of localized activity reductions improve EpiSim’s ability

to capture local infection dynamics?

Case Study A1 attempts to better capture the infection dynamics of individual bor-

oughs of Berlin by adding location-based remaining fractions. The base case is the

standard EpiSim scenario, which uses global remaining fractions. The policy case is a

scenario where where the global remaining fraction is superseded by the local remaining

fraction for individual boroughs.

To prepare this case study, the locationBasedRf fields must be filled with the re-

maining fractions for Berlin’s boroughs for the entire time-frame of the case study. To

start, the class AnalyzeSnzData was used to parse the cell-phone mobility data and

produce an input file per borough containing the daily activity reductions.

At the start of the simulation, the methods within class CreateRestrictionsFromCSV

4See https://github.com/matsim-org/matsim-episim-libs/tree/locationBasedRestrictions.
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read Berlin’s activity reduction input, and populate the remaining fraction field in each

Restriction. The methods within this class had to be expanded to also read all 12

borough-specific activity reduction files and populate the locationBasedRf field as well.

Case Study A1: 2 scenarios × 10 seeds = 20 simulations

Parameter Arguments

DistrictLevelRestriction no, yesForHomeLocation

The only parameter that varied in this case study is the episim-config option “Dis-

trictLevelRestriction.” The base case, which uses global remaining fractions, corre-

sponds to the “no” setting. “yesForHomeLocation” is used for the policy case, where

borough-based activity reductions are applied to agents living in the respective boroughs.

Since the activity reduction data relates to the home location of individuals, the option

“yesForActivityLocation” was superfluous in this case study. The results of Case Study

A1 are discussed in Section 4.2.

3.3.2 Case Study A2: Localized Contact Intensity

As described in Section 1.4.3, Case Study A2 explores whether the addition of regionally

differentiated contact intensities into EpiSim improve the model’s ability to capture local

infection dynamics. The intuition is that smaller home-sizes should have higher chances

of infection because the contact intensity is higher. Case Study A2 attempts to answer

the following research question:

RQ A2: Does the inclusion of localized contact intensity for home activities (based

on varying home-size) improve EpiSim’s ability to capture local infection dynamics?

In the standard EpiSim model, a different value for contact intensity is applied for

each activity type. All home events have a contact intensity of 1.0. The variation of

contact intensities based on home-size was completed in two steps: 1) Replace standard

home events with home XX events, which indicate the living space per person (e.g.

home 25 indicates 25m2 per person) and 2) specify a varied contact intensity for each of

the size-differentiated home XX events.

Varying home sizes were applied to agents based on their home-location. Data [39]

on the average home-size per person is available on the level of a Berlin-specific planning

unit named lebensweltlich orientierter Raum (LOR). Since there are 448 LORs in Berlin,

this planning unit has a higher resolution than the 12 boroughs in Berlin. An R script
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home 15: 1.0 + 3 ∗ ciModifier
home 25: 1.0 + 2 ∗ ciModifier
home 35: 1.0 + 1 ∗ ciModifier
home 45: 1.0
home 55: 1.0 - 1 ∗ ciModifier
home 65: 1.0 - 2 ∗ ciModifier
home 75: 1.0 - 3 ∗ ciModifier

Table 3.1: Modified Contact Intensity Equations

was written to clean this data, and prepare it to be used for EpiSim.

The java class DifferentiateHomeSizeInEvents was written to translate the default

home events into home XX events; if an agent lives in an LOR where the average home

size per person is between 40 and 50m2, their home events will be transformed into

home 45 events. By splitting up the general home event type into 7 activity types

(between 15m2 and 75m2), differing contact intensities can be applied to each home XX

event.

Case Study A2: 88 scenarios × 10 seeds = 880 simulations

Parameter Arguments

ciModifier 0.0, 0.1, 0.2, 0.3

thetaFactor 0.95, 0.955, 0.96, 0.965, 0.97, 0.975,

0.98, 0.985, 0.99, 0.995, 1.0

DistrictLevelRestriction no, yesForHomeLocation

The first parameter, ciModifier, controls to what degree the contact intensities for

home events are skewed. As described earlier, home events occurring in areas with

below average m2 per person receive higher contact intensities (thus, a higher chance

of infection) and vice versa. The way in which ciModifier was used to skew contact

intensities is delineated in Table 3.1. When the ciModifier is 0.0, contact intensities for

all home sizes is 1.0, just like the standard EpiSim model. When the ciModifier is 0.3,

the contact intensities vary more: between 0.1 for home 75 events and 1.9 for home 25

events.

In addition to ciModifier, two more parameters were added to this case study. Chang-

ing the contact intensities for home events disrupts calibration of the model. A calibra-

tion adjustment factor (thetaFactor) was therefore also included to slightly decrease the

overall chance of infection for the entire model. In the simulation analysis, we will have

to compare the base case (with uniform contact intensities) and a policy case (with
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skewed contact intensities). In the analysis, we will choose the thetaFactor which causes

the policy case to have a similar number of total infections in Berlin as the base case.

We want to examine the effects of localized contact intensity on the borough level, but

don’t want the Berlin-wide incidence curves to differ significantly.

We also included the DistrictLevelRestrictions, to see whether the combination of

local activity reduction (see previous subsection) and varied contact intensities would

improve the results. The results of Case Study A2 are discussed in Section 4.3.

3.4 Research Focus B: Local Lockdowns

The case studies presented in the last section attempt to improve EpiSim’s ability in

capturing local infection dynamics. Research focus B attempts to evaluate the merit of

implementing local restrictions in an EpiSim simulation.

For the following cases, the global remainingFraction is applied to all boroughs in

Berlin, unless a lockdown is instituted in a borough. Once a localized restriction is ap-

plied to a borough, the borough is added to the locationBasedRf, and the corresponding

Rf will be used instead of the global one. This means that the locationBasedRf will no

longer be filled with historical borough-based activity reductions from cell-phone data.

The following two case studies respond to RQ B1 and RQ B2.

3.4.1 Case Study B1: Pinpointed Lockdown

Case Study B1 examines the application of a localized lockdown to answer the following

research question:

RQ B1: How does a local lockdown affect the infection dynamics of the restricted

region and the un-restricted regions?

Case Study B1 restricts the Berlin borough of Mitte for the month of October 2021

(during the rise of the second wave). The choice to restrict Mitte for a month is rela-

tively arbitrary; the purpose of this case study is to demonstrate the effects of a local

lockdown. As described earlier, the global remaining fraction applied for all boroughs

and all activities. Only for leisure activities, did the locationBasedRf contain a single

entry between October 1 and October 31, 2020: Mitte - 0.0.

Case Study B1: 3 scenarios × 10 seeds = 30 simulations

Parameter Arguments

DistrictLevelRestriction no, yesForHomeLocation, yesForActivityLocation
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The only parameter for Case Study B1 is DistrictLevelRestriction. Two modes of

location based restrictions were tested: a) all agents who live in Mitte do not conduct

leisure activities and b) all leisure activities that are supposed to be performed in Mitte,

regardless of home location, are banned. These two options correspond to “yesForHome-

Location” and “yesForActivityLocations,” respectively. This is the only case study where

the argument of “yesForActivityLocation” is explored. When DistrictLevelRestriction is

set to “no,” Mitte will not be restricted; this corresponds to the base case. The results

of Case Study B1 are discussed in Section 5.1.

3.4.2 Case Study B2: Local Adaptive Restrictions

Finally, Case Study B2 explores the effects of a local (and global) adaptive policy in

Berlin.

RQ B2: How does a local adaptive policy affect incidences and time uses, compared

to a global adaptive policy? How do the parameters of the adaptive policy affect its ben-

efit?

Previously in this chapter, the development of the local adaptive policy was described.

Case Study B2 compares the effects of a local adaptive policy for the 12 boroughs of

Berlin to a global adaptive policy for the entirety of Berlin.

As described in Chapter 2, parameters for adaptive policy include the remaining

fractions for the initial, restricted, and open policies. The initial policy was set to reflect

the historical daily remaining fractions gleaned from the mobility behaviour from cell

phone data. For this case study, the global remainingFraction is used for the initial

policy. The locationBasedRf was only filled if a boroughs enters a restricted or open

phase. In this case study, DistrictLevelRestriction fixed to “yesForHomeLocation” for

all simulations; thus, local restrictions apply to the residents of the borough in question.

The remaining fraction for the open policy was 0.9 for all activity types. This assumes

that even if a borough is unrestricted, pre-coronavirus mobility levels will not be reached

(e.g. because employees still make use of home-office options). For a borough to open

up, the incidence must be below the Trigger for two weeks.
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Case Study B2: 84 scenarios × 10 seeds = 840 simulations

Parameter Arguments

adaptivePolicy no, yes-local, yes-global

Rf 0.0, 0.2, 0.4, 0.6

Trigger 10, 25, 50, 75, 100, 125, 150

The parameter adaptivePolicy controls whether an adaptive policy should be applied;

if so, whether it should be a global or local adaptive policy. The parameter Rf specifies

the remaining fraction for the restricted policy. For an argument of 0.0, no activities

will occur during a restricted phase. The final parameter, Trigger, specifies the incidence

threshold; if the incidence of a borough surpasses the Trigger, it will enter the restricted

phase. The results of Case Study B2 are discussed in Section 5.2.
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Chapter 4

Results A: Local Infection

Dynamics

This chapter presents the results of case studies A1 and A2, which are geared to respond

to RQ A1 and RQ A2, respectively. The research focus behind these two case studies

is to improve EpiSim’s ability to capture the local infection dynamics of individual bor-

oughs. The need for this improvement will be shown in Section 4.1; herein the incidence

curves of the standard EpiSim model will be compared to the incidences reported by the

Robert Koch Institut (RKI). Sections 4.2 and 4.3 will present two attempts to improve

the localized analysis: first, by varying the activity reductions by borough; second, by

assigning higher contact intensities to areas with small home sizes (resulting in higher

chances of infection).

4.1 Status-Quo

Figures 4.1 and 4.2 show the incidence curves for the second wave on a city and borough

level, respectively; the black plot shows the cases reported to the health authority and

the blue plot shows simulation output of the standard EpiSim setup. Starting with

Figure 4.1, it can be seen that the simulation projects higher incidences than reported

to the health authority; particularly during the peak of the second wave in December

2020. Looking at the borough level in Figure 4.2, the same observation can be made in

most boroughs. A possible explanation for this is that under-reporting becomes more

common when the health care system is overloaded; e.g. when contact tracing and

testing programs are over capacity, less cases will be captured.

Looking again at the simulated incidences per borough (blue plot in Figure 4.2),

we notice that the boroughs generally follow similar progressions; all 12 peak in mid-

29



Berlin

Apr
−2

0

Ju
n−

20

Aug
−2

0

Oct−
20

Dec
−2

0

Fe
b−

21

0

100

200

300

Date

7−
D

ay
 In

fe
ct

io
ns

 / 
10

0k
 P

op
.

Scenario rki base

Figure 4.1: Incidence in Berlin—EpiSim vs. RKI: Comparison between standard
EpiSim model (blue plot) and the reported cases to RKI (black plot) for entire Berlin.
The gap between plots during wave peaks could indicate under-reporting.
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Figure 4.2: Incidence in Berlin’s Boroughs—EpiSim vs. RKI: Comparison of
standard EpiSim model with RKI cases, faceted by Berlin Borough.
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December with incidences between 300 and 400. The cases reported to the RKI (black

plot), on the other hand, vary more drastically: for instance, Neukölln consistently has

a higher incidence than Lichtenberg.

To summarize, whereas the reported incidences vary significantly between boroughs,

the simulated incidences vary less between boroughs. This indicates that while the

standard EpiSim simulation is calibrated to model the infection dynamics of the entire

study region, the dynamics of sub-regions are harder to capture. The following two

sections attempt to improve the analysis of local virus spreading by individualizing the

simulation: first, by applying activity reduction rates per borough rather than a Berlin-

wide remaining fraction; second, by varying the chance of infection by an individual’s

home size (contact intensity).

If we do see changes between the base case and the policy case in the following

subsections, it will be difficult to ascertain whether the change is an improvement. Intu-

itively, we would like to see the gap between the policy case and RKI cases be constant

between boroughs. However, we do not know whether all boroughs are equally impacted

by under-reporting.

4.2 Case Study A1: Localized Activity Reduction

Case Study A1 incorporates locationBasedRfs for Berlin’s boroughs in order to im-

prove the simulated infection curves for the individual boroughs. The broader purpose

is to answer the following research question:

RQ A1: Does the addition of localized activity reductions improve EpiSim’s ability

to capture local infection dynamics?

The research question will be addressed in two parts: do the residents of borough A

reduce their activities on average more than the residents of borough B (for whatever

reason)? If so, does this decrease borough A’s simulated incidence curve such that it is

closer to reality?

Figure 4.3 shows the simulation results for Case Study A1.1 The base case (blue

plot) uses the global remainingFraction, while the policy case (red plot) uses the

locationBasedRf (as discussed in Section 3.3.1). In many boroughs, the localized ac-

tivity reduction doesn’t produce a large change in the incidence curve with respect to the

the standard EpiSim model. This indicates that activity reduction in most boroughs is

1More simulation results for Case Study A1 can be found here: https://covid-sim.info/jakob/

master/a1.
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Figure 4.3: Incidence in Berlin’s Boroughs—Borough-Based Activity Reduc-
tion: Set up analogously to Figure 4.2, this plot shows incidence curves for each borough.
The policy case (red plot), uses local remaining fractions for each borough. The base
case (blue plot) uses a single global remaining fraction for all boroughs.
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similar to the Berlin average. The major exceptions are two outer-boroughs—Marzahn-

Hellersdorf and Spandau—where the policy case produces a higher second wave than

the base case, indicating that residents completed more activities out-of-home than the

average Berliner. Perhaps their populations’ behaviors differ more strongly from that of

the other boroughs because they far from the city-center.

In those boroughs where the policy case produces a different incidence curve than

the base case, the policy case generally doesn’t actually show an improvement. In

Kreuzberg-Friedrichshain, the author expected the policy case to have higher incidences

than the base case (so as to better match the RKI numbers); however the opposite is

true. In Marzahn-Hellersdorf, a reduction in infections was expected; again, this was

not realized.

The inclusion of location-based remaining fractions in EpiSim does change the in-

cidence curves in some boroughs. This change, however, is not generally very large,

which indicates that activity reductions don’t vary significantly between most boroughs.

Responding to RQ A1, the inclusion of borough-based remaining fractions doesn’t seem

to improve EpiSim’s ability to capture the boroughs’ infection dynamics.

4.3 Case Study A2: Localized Contact Intensity

Case Study A2 attempts to answer the following research question:

RQ A2: Does the inclusion of localized contact intensity for home activities (based

on varying home-size) improve EpiSim’s ability to capture local infection dynamics?

In this case study we skewed the contact intensity based on average home-size per

LOR; agents living in an area with small home sizes will have higher contact intensities

(and thus, a higher chance of infection). RQ A2 will be explored in two parts: does the

inclusion of localized contact intensity have an impact on the incidence curves of the

boroughs? If there is an impact, does it show an improvement in the simulation’s ability

to capture the infection dynamics of individual boroughs?

Figure 4.4 shows the policy case, where the contact intensity is differentiated by

home-size.2 For the policy case shown, a ciModifier of 0.3 is used (to produce maximum

skewed contact intensities). The calibration adjustment factor (thFactor) is set to 0.96.

Looking at Figure 4.4, the difference between the base case and policy case is mi-

nuscule for all boroughs. Thus, adding localized contact intensities didn’t show any

2More simulation results for Case Study A2 can be found here: https://covid-sim.info/jakob/

master/a2.
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Figure 4.4: Incidences in Berlin’s Boroughs—Localized Contact Intensity:
Shows incidence curves for each Berlin borough. Black plot shows cases reported to
the RKI. Blue plot shows the output of the standard EpiSim model, wherein contact
intesnity is uniform across the study area. The red plot shows the policy case, where
agents living in LORs with small home-sizes have higher contact intensities. Parameters
used for policy case: ciModifier = 0.3, thetaFactor = 0.96, and DistrictLevelRestriction
= no (see Section 3.3.2 for more information).

significant effects. Figures 4.5 and 4.6 show that although there are significant differ-

ences in average home-sizes between LOR, the difference is not large between boroughs.

Regarding RQ A2, the inclusion of localized contact intensity does not improve EpiSim’s

ability to capture the infection dynamics on the borough level. If we were to look at the

infection curves per LOR, we might see more interesting results; unfortunately, data on

the reported cases is not available from RKI on the resolution of LOR.

4.4 Discussion

The first section showed that there is a overall divergence between the base case of Epi-

Sim for individual boroughs and the reported numbers. The purpose of this chapter was

to add location-based factors to the simulation in order to improve simulation’s ability

to capture the incidence curves of individual boroughs. Two factors were added, varied
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across geographical areas: activity reduction per borough, and home size per LOR.

Neither approach showed a significant improvement of the model’s ability to capture the

local infection dynamics.

This is, in itself, is a significant result. The divergence between borough’s incidence

curves cannot be explained by the fact that one borough’s residents act differently (e.g.

less “responsibly”) than another borough’s residents. The divergence can also not be

explained by different home sizes. Further work could examine whether there is a ge-

ographic dichotomy in other demographic factors, which could improve EpiSim’s local

projections. Income, for example, could serve as a proxy for factors that have an impact

on infection chances: e.g. access to healthcare or ability to work from home.

This chapter also shows that localization on the scale of borough doesn’t yield promis-

ing results in Berlin. Each Berlin borough has a population of between 200,000 and

400,000. At that size, the internal composition of individual boroughs is probably rather

heterogeneous. Thus, average activity reduction and average home-size doesn’t vary

significantly between boroughs (as shown in Figure 4.6). Further work should explore

the infection dynamics of more homogeneous areas. Can the infection dynamics of indi-

vidual neighborhoods be improved through the addition of localized activity reductions

or home size? The incidence data for smaller scopes was unfortunately not available to

the author.

The next chapter will continue to examine localized activity reductions; however,

these will not stem from the real mobility patterns gleaned from cell phone data. Instead,

artificial activity reductions will be imposed in the form of localized lockdowns.
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Chapter 5

Results B: Local Lockdowns

This chapter presents the results of case studies B1 and B2, which are geared to respond

to RQ B1 and RQ B2, respectively. Research focus B is concerned with evaluating the

merit of localized lockdowns.

Section 5.1, which shows Case Study B1, examines the effects of a month-long local

lockdown in a single borough (Mitte). Then, Section 5.2 evaluates the local adaptive

policy; this means lockdowns will be dynamically imposed on boroughs if their incidence

surpasses a certain threshold. This chapter is rounded off with a discussion of the results.

5.1 Case Study B1: Pinpointed Lockdown

Case Study B1 applies a local lockdown to the borough of Mitte for October 2020 in

order to answer the following research question:

RQ B1: How does a local lockdown affect the infection dynamics of the restricted

region and the un-restricted regions?

Figure 5.1 shows the incidence curves for each Berlin borough.1 As described in

3.4.1, two types of local restrictions are simulated: A) all residents of Mitte are barred

from completing leisure activities and B) all Berliners are barred from conducting leisure

activities in Mitte. The following two paragraphs evaluate the effects of each restriction

scheme.

Restricting Mitte’s Residents: Restricting people living in Mitte from conduct-

ing leisure activities (policy-home, red plot) makes a significant dent in Mitte’s incidence

1More simulation results for Case Study B1 can be found here: https://covid-sim.info/jakob/

master/b1.
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Figure 5.1: Incidence in Berlin’s Boroughs—Local Lockdown of Mitte: Inci-
dence plot for each borough during the second wave. Base case (blue) shows the standard
EpiSim model without a local lockdown. Policy-home (red) shows the simulation output
when residents of Mitte are barred from conducting any leisure activities. Policy-activity
(green) is the case, where no Berliners are allowed to conduct leisure activities within
Mitte. The lockdowns of both policy cases occur during the month of October 2020,
indicated by the blue rectangle.
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curve. These results make sense, since Mitte’s residents have significantly fewer con-

tacts.2 In other boroughs, the infections continue to increase; however, their incidence

curves have more shallow slopes and do no reach the same peak as in the base case.

Even though residents of other boroughs are not restricted in any way, they benefit from

meeting fewer Mitte residents, who could potentially be infectious.

Restricting Leisure Activities in Mitte: Restricting Berliners from doing leisure

activities in Mitte (policy-activity, blue plot) lead to a drop in incidences in all boroughs.

The most significant drop occurs in Mitte. A greater proportion of Mitte’s residents,

compared with residents of other boroughs, probably complete leisure activities in Mitte

itself. This leads to an out-sized impact of the policy on Mitte’s incidence.

In most non-Mitte boroughs, the policy-activity makes a bigger dent in their incidence

curves than policy-home. While policy-home in no way impacted the movement of most

Berliners, policy-activity applies to a portion of all boroughs’ residents: those who want

to eat dinner or visit a friend in Mitte. Thus, while a portion of the policy-activity’s

benefit is applied in Mitte, the rest is distributed over the other boroughs. Overall,

policy-activity has a greater Berlin-wide impact in reducing infections: 13.6% for policy-

home and 19.2% for policy-activity reduction with respect to the base-case.

5.2 Case Study B2: Local Adaptive Restrictions

Case Study B2 is designed to answer the following research question:

RQ B2: How does a local adaptive policy affect incidences and time uses, compared

to a global adaptive policy? How do the parameters of the adaptive policy affect its ben-

efit?

The final investigation of this thesis was to examine how effective an adaptive restric-

tion policy could have been in mitigating the effects of the second wave that hit Berlin

starting in Fall 2020. The global adaptive policy institutes a lockdown in the entirety of

Berlin when the incidence surpasses a threshold. The local adaptive policy, which was

developed as part of this thesis, institutes a targeted lockdown in an individual city bor-

ough if the incidence of that borough surpasses a threshold; for example, the boroughs

of Spandau and Mitte could be in lockdown while all other boroughs are open.3

The use of lockdowns to combat the pandemic comes with a trade-off: public health

vs. freedom of movement. Thus, the benefit and cost of policy case will be evaluated

2Note: the incidence curves are based on the home location of the infected individuals.
3Simulation results for case study B2 can be found here: https://covid-sim.info/jakob/master/b2.
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using two proxies: a reduction of infections (benefit) and a decrease average time each

person spends outside of their home (cost). The results of Case Study B2 will be explored

in 5 steps, each with a corresponding subsection. The key findings of each subsection

are summarized here:

1. The dynamics of an adaptive policy are such that an incidence increase leads to

the imposition of restrictions; those, in turn, will reduce the incidence.

2. The temporal pattern of the restriction phases depend on the Trigger and remain-

ing fraction for the restricted phase.

3. Adaptive policies carry an inherent trade-off; more stringent adaptive policies will

significantly reduce infections, at the cost of time spent outside of the home.4

4. The benefit/cost ratio of the adaptive policies is highest in the more lenient sce-

narios.5

5. The local adaptive policy performs better than the global adaptive policy in the

more stringent scenarios.

5.2.1 Relationship between Trigger and Lockdown:

Before aggregating over the 10 seeds, we will begin by looking at the incidence curves

for a single local adaptive policy run. The purpose is to show how the incidence curves

activate lockdowns, and, in turn, how those lockdowns influence the incidence curves.

For this illustrative run, a Trigger6 of 25 and a Rf of 0.4 for the restricted policy was

chosen (and the seed 4711).

Figure 5.2 shows results of a local adaptive policy; one incidence curve per Berlin

borough. The overlaid timeline shows the restriction policy active in that borough. As

we can see, whenever the incidence curve surpasses the trigger of 25, the borough enters

its restricted phase (“red”). Soon after, the incidences plummet. After the incidence

is below the Trigger for approximately two weeks, the borough opens up once again

(“blue”).

Figure 5.2 shows that during some restricted periods, the incidence continues to

increase after the lockdown has been established. This effect is magnified starting in

December 2020. At the end of the study time-frame, the so-called Delta variant of

concern (VOC) became more prevalent; a restriction regime that was able to handle the

4Stringent, for this section, indicates that the Rf and Trigger are low.
5Lenient, for this section, indicates that the Rf and Trigger are high.
6As described in Section 3.4.2, the Trigger serves as the incidence threshold between initial/open

phase and the restricted phase, as well between the restricted phase and open phase.

40



Restriction Policy: Initial Restricted Open

Spandau

0

20

40

60

Pankow Treptow−Koepenick

Steglitz−Zehlendorf

0

20

40

60

Charlottenburg−Wilmersdorf Tempelhof−Schoeneberg

Marzahn−Hellersdorf

0

20

40

60

Reinickendorf Mitte

Friedrichshain−Kreuzberg

Aug
−2

0

Sep
−2

0

Oct−
20

Nov
−2

0

Dec
−2

0

Ja
n−

21

Fe
b−

21

0

20

40

60

Neukoelln

Aug
−2

0

Sep
−2

0

Oct−
20

Nov
−2

0

Dec
−2

0

Ja
n−

21

Fe
b−

21

Lichtenberg

Aug
−2

0

Sep
−2

0

Oct−
20

Nov
−2

0

Dec
−2

0

Ja
n−

21

Fe
b−

21

Date

7−
D

ay
 In

fe
ct

io
ns

 / 
10

0k
 P

op

Figure 5.2: Incidences and Restriction Timelines for Berlin’s Boroughs—Local
Adaptive Policy: Each facet shows the incidence of a Berlin borough for a single seed
(4711) where the remaining fraction for restricted policy is 0.4 and the trigger is 25.
Timelines indicate when a borough has an initial, restricted, and open policy. The
bottom edge of timeline indicates trigger value.
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wild type of SARS-CoV-2 may not be sufficiently tough to stop the Delta VOC in its

tracks.

Looking at the discrepancy in lockdowns, one might wonder why Charlottenburg-

Wilmersdorf stays below the trigger until early December. As we saw in the previous

subsection, the incidence of a borough is influenced by the lockdown measures of other

regions; thus Charlottenburg-Wilmersdorf’s infections could be dampened because sur-

rounding boroughs are restricted. Additionally, while in the initial phase, boroughs

follow the data-based activity reductions gleaned from cell-phone data. In late 2020,

the government enacted restrictions which reduced the activity participation in Berlin.

Thus, Charlottenburg-Wilmersdorf’s incidence was dampened due to real-world restric-

tions rather than the simulated adaptive ones.7

This subsection has shown how the local adaptive policy functions. While all bor-

oughs are impacted by at least two restricted phases, the lockdowns occur at different

times. This demonstrates the promise of local adaptive restrictions: some boroughs with

lower incidences do not need to be restricted while other boroughs are in lockdown.

5.2.2 Temporal Patterns

The last subsection showed that lockdowns occur at different times in different boroughs.

As a next step, the temporal patterns of lockdowns will be explored in greater detail,

as they relate to Rf and Trigger inputs. Figure 5.3 shows the policy timeline for each

borough, faceted by the extreme values for Rf and Trigger.

Trigger: To begin, we will examine the effect of the Trigger; the left and right facets

of Figure 5.3 show Triggers of 10 and 150, respectively. For a Trigger of 10 (left side),

most boroughs go into restricted states very soon; this makes sense, since the Berlin-wide

incidence was 3.2 at beginning of the study time-frame (July 18), so it doesn’t take much

time to reach 10. The incidences in Berlin’s boroughs don’t reach 150 until September,

which causes the boroughs in the right facets to remain in their initial states for longer.

Figure 5.3 also shows that the lockdown phases are more synchronized between bor-

oughs when the Trigger is high. A single borough doesn’t usually reach an incidence of

150 alone; there is usually exponential growth throughout the entire city. This result

is reasonable because high incidences in one borough will fuel the exponential growth

in other boroughs, especially in a city as interconnected as Berlin. At lower Triggers, a

local outbreak (e.g. super-spreader event) could spike a borough’s incidence above the

Trigger, while other boroughs are not close to the limit yet.

Rf: Next we will compare the top and bottom facets of Figure 5.3, which show a Rf

7Further work should consider decoupling the initial policy from the activity reductions provided by
the cell phone data.
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Figure 5.3: Restriction Timelines for Berlin’s Boroughs—Local Adaptive Pol-
icy: The four facets show the combinations of the extreme values for two variables:
Trigger (min is left, max is right) and Rf (min in top, max is bottom). Each facet
contains a restriction timeline for each Berlin borough; the gray phase shows the initial
policy, the red phase shows a lockdown policy, and the blue phase shows an open policy.
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for restricted policy of 0.0 and 0.6, respectively. Here we can see that the lower Rf leads

to shorter lockdowns. This can be explained by the fact that more intense lockdowns

will push the incidence below the trigger threshold more rapidly, allowing the borough

to open up sooner. Additionally, the open phases between lockdowns last longer with a

lower Rf. For a borough to open up, it needs to be below the trigger for 2 weeks; in that

time, the lower Rf will force the incidence further down than with a higher Rf. From

that lower level, it will take the borough longer to surpass the trigger again, leading to

longer open phases.

To summarize, runs with higher triggers lead to later and more synchronized lock-

downs than runs with lower triggers. Runs with higher Rfs have longer lockdowns than

ones with lower Rf’s.

5.2.3 Effect of Local Adaptive Policy on Incidence and Time-Use

So far, some characteristics of the restriction policies and the incidence curves have

been described; now, the benefits and costs of the adaptive policies will be evaluated.

Restrictions are implemented to reduce the number of people who get seriously sick,

must be hospitalized, and/or die; in the context of this thesis, however, the reduction

in overall infections will be considered as the main goal. A major cost of restrictions is

that people cannot go to places they want to go to, or do things they want to do. The

following paragraphs will consider the reduction in average time spent outside of the

home as a proxy for this cost.

Figure 5.4 shows Berlin’s incidences, while Figure 5.5 shows the average minutes per

day spent outside of the home. Both plots are faceted by extreme values for Trigger and

Rf, and each facet shows the base case, local adaptive policy, and global adaptive policy.

The plots and all further analysis use aggregated data; for each metric, the mean over

10 runs is taken to remove some of the stochastic effects.

Incidence: Figure 5.4 shows the incidence progressions in Berlin for the extreme

values of those two parameters. Several initial observations can be made: the local

maximum of the infection waves depends heavily on the Trigger, while the local minimum

depends more on the Rf of the restricted policy. All adaptive policies lead to a significant

reduction in infections as compared to the base case (note the logarithmic scale on the

y-axis). In the most stringent scenario—Trigger=10 and Rf=0.0—the local adaptive

reduces the total infections by 96% (155,000). In the most lenient scenario—Trigger=150

and Rf=0.6—the reduction is still significant: 38% or 62,000 avoided infections.

Table 5.1 shows the percent reduction in infections of the local adaptive policy vs.

the base case; not just for the extreme values of Trigger and Rf, but for all the simulated
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values. The trend shown in Figure 5.4 is validated: lower Triggers and Rfs result in the

greatest reductions of infections. The same trend can also be seen when comparing the

global adaptive policy to the base case; this is shown in Table A.1 in the Appendix.

Time-Use Reduction: The goal of reducing infections is not the only criteria for

implementing lockdowns; the time lost must also be considered as a second criteria.

Figure 5.5 shows average time spent outside of the home, faceted analogously to the

previous figure. The most stringent adaptive policy led to the least time spent outside

of the home—a 29% reduction of about 86 minutes per day, as compared to the base-

case. The most lenient scenario only results in a 2 minute reduction of out of home

activities.

Table 5.2 shows the percent reduction in time spent outside of the home for all

simulated arguments for the parameters of Trigger and Rf. Here again, the trend is

confirmed: the lower the Trigger and Rf, the less time people spend outside of their

homes. Table A.2 in the Appendix shows the same trend for the global adaptive policy.

Summary: The more stringent adaptive policies lead to the greater reductions in

infections; the associated cost is that people spend the less time outside of their homes.

The following subsection attempts to weigh the costs against the benefits.
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Figure 5.4: Incidences For Berlin—Adaptive Policies: Incidence curves (logarith-
mic scale) for Berlin, faceted for the extreme values of Rf and Trigger. The black plot
shows the base case (standard EpiSim model). The blue and red plots show the two
policy cases: the global and local adaptive policies, respectively. The text box shows the
total infections in the study-time frame for each case.

Table 5.1: Percent Decrease in Infections, Local Adaptive Policy vs. Base:
Percent reduction calculated as follows: (Infbase − Inflocal)÷ Infbase × 100%, where Inf
indicates the total number of infections in the study time-frame; local and base indicate
the local adaptive policy and base case, respectively. For example, for Trigger = 10 and
Rf = 0.0, the local adaptive policy reduced 96% percent of infections with respect to the
base case.
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Figure 5.5: Time-Use For Berlin—Adaptive Policies: The plot shows the average
minutes agents spend outside of their home every day (smoothed using weekly average).
The text box shows the average over the entire study time frame (second wave). The
plot colors and facets are designated to match Figure 5.4.

Table 5.2: Percent Decrease of Time-Use, Local Adaptive Policy vs. Base
Case: Shows percent reduction in average time agents spend outside of their homes.
Calculated as follows: (Tbase−Tlocal)÷Tbase× 100%, where T indicates the mean daily
minutes that Berlin’s residents spend outside of their homes, averaged over the study
time-frame; local and base indicate the local adaptive policy and base case, respectively.
For example, for Trigger = 10 and Rf = 0.0, Berlin’s residents spent 29.3% less time
outside of their homes than in the base case.
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Table 5.3: Impact of Local Adaptive Policy with Respect to Base Case: Average
daily infections avoided by the local adaptive policy (with respect to base case) divided
by the average number of out-of-home minutes lost through local adaptive policy (again,
with respect to base case). For example, for Rf = 0.0 and Trigger = 10, 8.2 daily
infections are avoided per sacrificed out-of-home minute. For the more lenient cases, the
impact is much higher.

5.2.4 Incidence vs. Time-Use

It is difficult to weigh the benefit in incidence reduction against the cost of lost activities.

It is most striking, however, to look at the most lenient scenario: there is only a 2 minute

average daily reduction of out-of-home activities. Looking again at Figure 5.5, we see

that in the most lenient parameters (top-right facet), the adaptive policies (red and blue

plots) implemented earlier lockdowns than occurred in reality (black plot); this lead to

less out-of-home time in October and November, as compared to the base case. However,

the local adaptive policy balances this loss out by opening up around Christmas, leading

to a spike in out-of-home time in the beginning of January. This indicates that if the

Berlin lockdowns in the second wave were more strategically placed, 62,000 people would

have avoided infection at almost no cost to out-of-home time.

In attempt to compare the costs to the benefits of each scenario in a more systematic

way, a ratio was calculated for each scenario: average daily infections avoided by the

adaptive policy divided by the average daily out-of-home time lost.

Impact =
Ībase − Īpolicy
T̄base − T̄policy

where Ī is the average daily infections and T̄ is the average daily time spent outside

of the home; base and policy denote the standard EpiSim simulation and the policy

case utilizing adaptive restrictions. Table 5.3 shows this metric for every argument

combination for the local adaptive policy. The greatest impact is made when Rf and

Trigger are high: every minute that an individual stays at home every day avoids 114.8
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new daily infections. For lower Triggers and Rfs, more time has to be sacrificed to reduce

the infection curves.

As described above, the lenient scenario doesn’t significantly add new lockdowns;

rather, it institutes lockdowns earlier leading to a significantly dampened second wave

without impacting the net time spent out of home. At lower triggers, you attack smaller

waves, which doesn’t have the same efficiency as attacking big waves. Lets imagine two

towns, each with 10,000 residents: town A has 10 infectious people and town B has 150

infectious people. If no restrictions were applied, a lot more people would be infected in

town B than in town A. If, instead, equal lockdowns had been imposed in both cases,

a lot more people in town B would be avoided infection than in town A. As the time

lost would be equal in both towns, the lockdown in town B would have more impact.

However, town A would still have fewer total infections than town B.

The benefit/cost ratio of the adaptive policies is highest in the more lenient scenarios.

The same trend can be observed for the global adaptive policy, which is shown in Table

A.3 in the Appendix.

5.2.5 Local Adaptive Policy vs. Global Adaptive Policy

We have now summarized the general trends of the local adaptive policy, and explained

that the global policy follows the same trend. The next step is to compare the two

adaptive policies. Does the local adaptive policy have an advantage over the global one?

If so, at what parameters (Trigger and Rf)?

We do this by comparing the impact of the two policies for each scenario. However,

we didn’t use the standard time-frame for this analysis. The results of this analysis

depended heavily on what end-date was chosen for the for the time frame. At a fixed

end date, the scenario with the local adaptive policy may be in an open phase while

the global adaptive policy scenario might be in a restricted phase (as shown in upper

right facet of Figure 5.4). This distorts the results when comparing the local and global

policy.

Thus, we chose a variable time frame, depending on when scenarios are in a similar

point of restriction policy. For each scenario: the start date of the variable time frame

is when the first lockdown is lifted; the end date is when the second lockdown is lifted.

Thus, the data analyzed for each scenario includes one open phase and one restricted

phase. The impact for each scenario was then calculated for each unique time-frame.

Finally, Table 5.4 compares the impacts of the local vs global adaptive policies in terms

of percent difference; a positive values indicates that the local adaptive policy performs

better than the global one.
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Table 5.4: Impact of Local Adaptive Policy vs. Impact of Global Adap-
tive Policy, Percent Change: Calculated as follows: (Impactlocal − Impactglobal) ÷
Impactglobal × 100%. Positive values indicate that local adaptive policy performs better
than global adaptive policy. The Impact is calculated using a different time-frame for
each scenario; the start and end dates of the variable time frames are set such that the
time-frame encompass one restricted phase and one open phase.

The negative values in Table 5.4 indicate that the local adaptive policy does not

always perform better than the global one. However, a relatively robust trend can be

identified: when the Trigger is lower—between 10 and 100— the local adaptive policy

outperforms the global policy.8 At a Trigger of 125 or 150, the global policy performs

better than the local one. It is reasonable that at a lower trigger, the local policies are

advantageous; a pinpointed restriction will keep the infections in check without imposing

a significant time loss in all boroughs.

When Rf=0.0, the local policy is advantageous (except for Trigger = 25). For the

higher Rf’s, the trend is less clear. The local policy is most advantageous in the most

stringent scenario, where Trigger=10 and Rf=0.0; the local adaptive policy’s impact has

a percent change of 135% as compared to the global one.

5.3 Discussion

This chapter has been concerned with examining the effects of instituting local lockdowns

in Berlin’s boroughs. Case Study B1 aimed to demonstrate the effects of a local lockdown

for the borough in lockdown and the non-restricted boroughs. Two types of lockdowns

were tested: A) restricting resident’s of Mitte from conducting leisure activities and B)

barring all Berliners from conducting leisure activities in Mitte. In both cases, all bor-

oughs had a reduction their incidences; however, the incidence of the restricted borough

was most reduced. This demonstrated how interconnected Berlin is; restriction policies

in one region will impact the infection dynamics of surrounding regions.

The impact of Mitte’s lockdown on the other boroughs is not constant. We can notice

8Notable exception: when Trigger is 25.
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that two outer boroughs—Lichtenberg and Marzahn-Hellersdorf—are least impacted by

either restriction of Mitte. This could be explained by their geographical distances from

Mitte, which might reduce the mobility between them. The counter example is Spandau,

on the western edge of Berlin, which does, in fact, have a significant reductions in

infections. Further work could explore the reasons why some boroughs are impacted more

than others. It would be interesting to study the mobility patterns between boroughs

and whether they can help us understand divergent infection dynamics. What locations

serve as significant meeting points for residents of different boroughs? Which boroughs

originate more leisure activities than they attract (residents go to other boroughs to

have fun), or vice versa?

The red zones in the no-COVID proposal [10] both curtail people from entering a

restricted area and from leaving it. The functionality developed as part of this thesis can

only restrict either direction of movement separately. To better evaluate the no-COVID

proposal, a restriction of bi-directional movement should be implemented.

Case Study B2 examines the local adaptive policy. We saw that the lockdowns

patterns for boroughs depended strongly on the two parameters that were varied between

scenarios: Trigger and Rf. We also saw that the more stringent policies reduce the

infections more drastically, while also reducing the time people spend outside of their

homes. When looking at the cost-benefit of these two factors, we see that the more lenient

policy can remove many infections without a significant time loss. The more stringent

the scenario, the fewer infections are avoided per minute lost due to the restriction. It is

unclear how to compare the value of 1 minute per day lost to the value of avoiding one

infection; this is a task for policy makers. Making policy recommendations are out of the

scope of this thesis. The benefits of the lenient adaptive policies are abundantly clear:

62,000 fewer people would have been infected in the second wave, while the reduction in

time spent outside of the home would have been minimal.

The local adaptive policy, which was developed as part of this thesis, outperforms

the global one when the Trigger was low (especially when the Rf is also 0.0). Thus, if

policy makers decide that the benefits of a stringent adaptive policy outweigh the costs,

then a local adaptive policy would be an promising option.

The parameters at which the local adaptive policy outperforms the global policy—a

low trigger and low Rf—approach the recommendations of the no-COVID proposal [10].

Baumann et al. [10] argue for an even lower Trigger: a region should be restricted

whenever there are any local cases that aren’t contained by quarantines or isolation

policies.

The results of the local adaptive policies showed many cycles of imposing and lifting
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restrictions. This is a dynamic that the no-COVID proposal was designed to avoid.

An important element of the no-COVID proposal [10] is not explored in Case Study

B2: a robust test-trace-isolate (TTI) program to keep the incidence low. While EpiSim

implements TTI functionality, the capacity of the TTI is not increased as part of this

thesis. Future work should examine if increasing the capacity of a TTI program could

avoid the cycles of lockdowns. This could improve the evaluation of the no-COVID

proposal.

It is insightful to see that as Delta VOC became more prevalent, the local restrictions

weren’t able to suppress incidences as well as with the wild-type. This observation

fits with a point made in Chapter 1: New Zealand abandoned the goal of complete

eradication of the virus after suffering a wave of Delta infections [11]. Future work

should examine the effect of localized restrictions in later time-frames, where VOCs gain

prevalence.

It is unclear how tenable borough-based lockdowns would be in Berlin. Berlin’s

boroughs are the not self-contained; there is a lot of travel between boroughs. Thus,

the enforcement of travel restrictions between boroughs would be difficult. In general, I

think that larger study areas would be more beneficial to test this theory. In the Ruhr-

area of Germany, for instance, there are many closely situated cities. I think it would

be useful to explore how local restrictions of separate cities would work; since they are

more self-contained, the incidence of one region would be less dependent on another. I

believe that a local adaptive policy would perform better than the global one in such a

scenario.

This chapter has shown that pinpointed lockdowns—local adaptive policies, in part-

icular—are a promising tool to mitigate the effects of COVID-19.
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Chapter 6

Conclusion

The motivations of this thesis was to A) simulate how regional characteristics influence

regional infection dynamics and B) to evaluate the merits of pinpointed lockdowns. The

contributions of this thesis are two-fold: A) the added functionality to EpiSim, which

allows localized simulations and B) a set of case studies to explore the motivations

mentioned above. These two contributions will be summarized in the following two

sections.

6.1 EpiSim

EpiSim [8] is an epidemiological simulation model developed to model infection dynamics

of the COVID-19 pandemic. It was implemented to prognosticate the effects of various

mitigation strategies, including lockdowns, vaccination campaigns and contact tracing.

Chapter 2 gave a detailed explanation of the data that EpiSim requires and how the

software functions.

A significant contribution of this thesis is the added functionality to EpiSim, which al-

lows infection parameters to vary geographically and localized restrictions to be imposed.

The standard EpiSim model applies a daily activity reduction to the pre-coronavirus ac-

tivity trajectories of the residents of the study area. This thesis extends EpiSim to have

separate activity reductions for different regions instead of a single global one.

On this basis, a local adaptive policy was designed to dynamically restrict or open up

an area based on the incidence of that area. The functional contributions were described

in detail in Chapter 3.

6.2 Case Studies

The functional contributions allowed a set of research questions to be posed; case studies

were developed to respond to those questions. The manner in which the case studies
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were set up was described in Chapter 3. Chapters 4 and 5 analyze the results of the case

studies. The findings are also summarized below.

6.2.1 Research Focus A: Local Infection Dynamics

The first motivation was to improve EpiSim’s ability to capture the infection dynamics

of individual geographic regions within the study area. This led to the following two

research questions:

RQ A1: Does the addition of localized activity reductions improve EpiSim’s ability

to capture local infection dynamics?

RQ A2: Does the inclusion of localized contact intensity for home activities (based

on varying home-size) improve EpiSim’s ability to capture local infection dynamics?

The results, as shown in Chapter 4, showed that varying activity reductions and

contact intensity didn’t cause significant changes in the incidences of most boroughs.

When there was a difference, it didn’t necessarily close the gap to the reported cases

from the RKI. This indicates that the regional differences in activity reduction and

home size are not the best factors for explaining diverging incidence curves between

Berlin boroughs. This, itself, is an notable result: it means, for instance, that diverging

incidence curves cannot be explained by the residents of one Berlin borough of behaving

more “irresponsibly” than residents of another. Further work should explore whether

these factors are more relevant for larger study regions. Additionally, further work could

explore the addition of other regionally diverging factors into the model.

6.2.2 Research Focus B: Local Lockdowns

The second motivation was to explore the merits of imposing localized lockdowns,

wherein some regions are restricted while others remain open. This research focus was

inspired by the no-COVID proposal [10], which attempts to eradicate infections through

local lockdowns. The following research questions were posed:

RQ B1: How does a local lockdown affect the infection dynamics of the restricted

region and the un-restricted regions?

RQ B2: How does a local adaptive policy affect incidences and time uses, compared

to a global adaptive policy? How do the parameters of the adaptive policy affect its ben-

efit?
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Case Study B1 showed that a lockdown in one Berlin borough not only dampens the

incidence of the restricted borough, but also decreases the incidences of other boroughs.

Case Study B2 explored the effects of a local adaptive policy for the 12 boroughs that

make up Berlin. When the policy was configured stringently, the incidences plummeted;

the downside of this policy was that people spent less time outside of their homes.

The most lenient of the adaptive policies was able to also prevent 62,000 people from

contracting SARS-CoV-2 during the second wave, while the reduction in time outside of

the home was minimal.

The local policy, developed by this thesis, proved to be a promising restriction policy

at certain configurations. It performed better than the global adaptive policy when the

incidence threshold for a lockdown (Trigger) was low.

6.3 Outlook

As this is being written, one week before thesis submission, a new variant of concern

(VOC) is spreading around the world: B.1.1.529 or “Omicron” [40]. While many prop-

erties of Omicron are still unknown, many countries have imposed travel restrictions to

South Africa, where the VOC was first identified. Japan and Israel have closed their

borders to stave off the variant [41]. The EpiSim team is currently working furiously to

model the spread of Omicron in Cologne, Germany, and testing the effectiveness of new

lockdowns.

Modeling the spread of COVID-19 with epidemiological simulations will continue to

be vital undertaking in the coming months and years. While SARS-CoV-2 continues to

shape our daily reality, reducing the amount of people stricken by this dangerous disease

while also regaining normalcy in our mobility and interactions remains a monumental

task. This thesis introduced functionality to EpiSim, which allows the simulation of

pinpointed restrictions. The case studies showed that a local lockdown regime in Berlin

could be a promising tool in fighting the pandemic.
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Hotspots in deutschen Großstädten,” Die Zeit, Jun. 2021. [On-

line]. Available: https://www.zeit.de/wissen/2021-05/soziale-ungleichheit-corona-

infektionen-aermere-stadtteile-datenanalyse-soziale-brennpunkte [Accessed: 2021-

11-29].

[10] M. Baumann, M. Beier, M. Brinkmann, H. Bude, C. Fuest, M. Hallek, I. Kickbusch,

M. Mayer, M. Meyer-Hermann, A. Peichl, E. Rosert, and M. Schneider, “A

proactive approach to fight SARS-CoV-2 in Germany and Europe,” Jan. 2021.

[Online]. Available: https://nocovid-europe.eu/assets/doc/nocovid framework.pdf

[Accessed: 2021-07-12].

[11] N. Frost, “Battling Delta, New Zealand Abandons Its Zero-Covid Ambitions,” The

New York Times, Oct. 2021. [Online]. Available: https://www.nytimes.com/2021/

10/04/world/australia/new-zealand-covid-zero.html [Accessed: 2021-11-29].

[12] V. Wang, “Why China Is the World’s Last ‘Zero Covid’ Holdout,” The New

York Times, Oct. 2021. [Online]. Available: https://www.nytimes.com/2021/10/

27/world/asia/china-zero-covid-virus.html [Accessed: 2021-11-29].

[13] R. Mullner, “Epidemiology | medicine,” Aug. 2014. [Online]. Available:

https://www.britannica.com/science/epidemiology [Accessed: 2021-10-20].

[14] L. Kou, X. Wang, Y. Li, X. Guo, and H. Zhang, “A multi-scale agent-based

model of infectious disease transmission to assess the impact of vaccination

57

https://www.sciencedirect.com/science/article/pii/S0048969720378566
https://www.sciencedirect.com/science/article/pii/S0048969720378566
https://ourworldindata.org/policy-responses-covid
https://ourworldindata.org/policy-responses-covid
http://arxiv.org/abs/2011.11453
https://www.zeit.de/wissen/2021-05/soziale-ungleichheit-corona-infektionen-aermere-stadtteile-datenanalyse-soziale-brennpunkte
https://www.zeit.de/wissen/2021-05/soziale-ungleichheit-corona-infektionen-aermere-stadtteile-datenanalyse-soziale-brennpunkte
https://nocovid-europe.eu/assets/doc/nocovid_framework.pdf
https://www.nytimes.com/2021/10/04/world/australia/new-zealand-covid-zero.html
https://www.nytimes.com/2021/10/04/world/australia/new-zealand-covid-zero.html
https://www.nytimes.com/2021/10/27/world/asia/china-zero-covid-virus.html
https://www.nytimes.com/2021/10/27/world/asia/china-zero-covid-virus.html
https://www.britannica.com/science/epidemiology


and non-pharmaceutical interventions: The COVID-19 case,” Journal of Safety

Science and Resilience, vol. 2, no. 4, pp. 199–207, Dec. 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S2666449621000335 [Accessed:

2021-10-20].

[15] E. Hunter, B. M. Namee, and J. Kelleher, “A Comparison of Agent-Based Models

and Equation Based Models for Infectious Disease Epidemiology,” CEUR workshop

proceedings, vol. 2259, pp. 33–44, Jan. 2018.

[16] G. N. Gilbert and K. G. Troitzsch, “Multi-agent models,” in Simulation for the

social scientist, 2nd ed. Maidenhead, England ; New York, NY: Open University

Press, 2005, pp. 172–198, chapter 8.

[17] S. Merler, M. Ajelli, L. Fumanelli, M. F. C. Gomes, A. P. y. Piontti, L. Rossi,

D. L. Chao, I. M. Longini, M. E. Halloran, and A. Vespignani, “Spatiotemporal

spread of the 2014 outbreak of Ebola virus disease in Liberia and the effectiveness

of non-pharmaceutical interventions: a computational modelling analysis,” The

Lancet Infectious Diseases, vol. 15, no. 2, pp. 204–211, Feb. 2015. [Online].

Available: https://www.sciencedirect.com/science/article/pii/S1473309914710746

[Accessed: 2021-10-19].

[18] S. Zhou, S. Zhou, Z. Zheng, and J. Lu, “Optimizing Spatial Allocation of

COVID-19 Vaccine by Agent-Based Spatiotemporal Simulations,” GeoHealth,

vol. 5, no. 6, p. e2021GH000427, 2021. [Online]. Available: http://onlinelibrary.

wiley.com/doi/abs/10.1029/2021GH000427 [Accessed: 2021-10-19].

[19] A. Horni, K. Nagel, and K. W. Axhausen, The Multi-Agent Transport

Simulation MATSim. Ubiquity Press, Aug. 2016. [Online]. Available: https:

//www.ubiquitypress.com/site/books/e/10.5334/baw/ [Accessed: 2021-10-21].

[20] A. Agarwal, D. Ziemke, and K. Nagel, “Bicycle superhighway: An environmentally

sustainable policy for urban transport,” Transportation Research Part A:

Policy and Practice, vol. 137, pp. 519–540, Jul. 2020. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S096585641731162X [Accessed:

2021-10-21].

[21] I. Kaddoura, “Marginal Congestion Cost Pricing in a Multi-agent Simulation:

Investigation of the Greater Berlin Area,” Journal of Transport Economics

and Policy, vol. 49, no. 4, pp. 560–578, 2015, publisher: University of

58

https://www.sciencedirect.com/science/article/pii/S2666449621000335
https://www.sciencedirect.com/science/article/pii/S1473309914710746
http://onlinelibrary.wiley.com/doi/abs/10.1029/2021GH000427
http://onlinelibrary.wiley.com/doi/abs/10.1029/2021GH000427
https://www.ubiquitypress.com/site/books/e/10.5334/baw/
https://www.ubiquitypress.com/site/books/e/10.5334/baw/
https://www.sciencedirect.com/science/article/pii/S096585641731162X


Bath. [Online]. Available: http://www.jstor.org/stable/jtranseconpoli.49.4.0560

[Accessed: 2021-12-12].

[22] J. Bischoff, M. Maciejewski, and K. Nagel, “City-wide shared taxis: A simulation

study in Berlin,” in 2017 IEEE 20th International Conference on Intelligent

Transportation Systems (ITSC), Oct. 2017, pp. 275–280, iSSN: 2153-0017. [Online].

Available: https://doi.org/10.1109/ITSC.2017.8317926 [Accessed: 2021-10-21].

[23] M. L. Barreto, M. G. Teixeira, and E. H. Carmo, “Infectious diseases

epidemiology,” Journal of Epidemiology and Community Health, vol. 60, no. 3,

pp. 192–195, Mar. 2006. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC2465549/ [Accessed: 2021-12-12].

[24] T. Smieszek, “A mechanistic model of infection: why duration and intensity

of contacts should be included in models of disease spread,” Theoretical

Biology and Medical Modelling, vol. 6, no. 1, p. 25, Dec. 2009. [Online].

Available: https://tbiomed.biomedcentral.com/articles/10.1186/1742-4682-6-25

[Accessed: 2021-12-09].

[25] T. Smieszek, M. Balmer, J. Hattendorf, K. W. Axhausen, J. Zinsstag, and R. W.

Scholz, “Reconstructing the 2003/2004 H3N2 influenza epidemic in Switzerland

with a spatially explicit, individual-based model,” BMC infectious diseases, vol. 11,

p. 115, May 2011.

[26] S. A. Müller, W. Charlton, R. Ewert, C. Rakow, T. Schlenther, and K. Nagel,

“MODUS-COVID Vorhersage vom 8.4.2020,” Technische Universität Berlin,

Report, Apr. 2020. [Online]. Available: https://depositonce.tu-berlin.de/handle/

11303/11125 [Accessed: 2021-12-09].

[27] S. A. Müller, W. Charlton, R. Ewert, C. Rakow, T. Schlenther, and K. Nagel,

“MODUS-COVID Vorhersage vom 24.4.2020,” Technische Universität Berlin,

Report, Apr. 2020. [Online]. Available: https://depositonce.tu-berlin.de/handle/

11303/11126 [Accessed: 2021-12-09].

[28] S. A. Müller, W. Charlton, R. Ewert, C. Rakow, T. Schlenther, and K. Nagel,

“MODUS-COVID Vorhersage vom 7.5.2020,” Technische Universität Berlin,

Report, May 2020. [Online]. Available: https://depositonce.tu-berlin.de/handle/

11303/11127 [Accessed: 2021-12-09].

59

http://www.jstor.org/stable/jtranseconpoli.49.4.0560
https://doi.org/10.1109/ITSC.2017.8317926
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465549/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2465549/
https://tbiomed.biomedcentral.com/articles/10.1186/1742-4682-6-25
https://depositonce.tu-berlin.de/handle/11303/11125
https://depositonce.tu-berlin.de/handle/11303/11125
https://depositonce.tu-berlin.de/handle/11303/11126
https://depositonce.tu-berlin.de/handle/11303/11126
https://depositonce.tu-berlin.de/handle/11303/11127
https://depositonce.tu-berlin.de/handle/11303/11127


[29] S. A. Müller, W. Charlton, N. D. Conrad, R. Ewert, C. Rakow, H. Wulkow,

T. Conrad, K. Nagel, and C. Schütte, “MODUS-COVID Bericht vom
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Appendix A

Global Adaptive Policy Tables

The following tables are auxiliary to Chapter 5. While Case Study B2 presented tables

for the local adaptive policy, the following tables show the corresponding results for the

global adaptive policy.

Table A.1: Percent Decrease in Infections, Global Adaptive Policy vs. Base
Case: Percent reduction calculated as follows: (Infbase−Infglobal)÷Infbase×100%, where
Inf indicates the total number of infections in the study time-frame; global and base
indicate the global adaptive policy and base case respectively.
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Table A.2: Percent Decrease of Time-Use, Global Adaptive Policy vs. Base
Case: Shows percent reduction in average time agents spend outside of their homes.
Calculated as follows: (Tbase−Tglobal)÷Tbase×100%, where T indicates the mean daily
minutes that Berlin’s residents spend outside of home, averaged over the study time-
frame; global and base indicate the global adaptive policy and base case respectively.

Table A.3: Impact of Global Adaptive Policy with Respect to Base Case:
Average daily infections avoided by the global adaptive policy (with respect to base
case) divided by the average number of out-of-home minutes lost through global adaptive
policy (again, with respect to base case).
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