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Abstract

Serving both passenger and freight demand with the same vehicle fleet is an ambition that led to the development of several in-
novative vehicle concepts [10, 26]. This study proposes a simulation-based methodology to investigate the execution of freight
tours with an On-Demand fleet of autonomous, modular vehicles while giving priority to passenger transport. Based on assump-
tions regarding the operational scheme, tour pricing and delivery time windows, the software Multi-Agent Transport Simulation
(MATSim) is extended. The developed methodology is then applied to a Berlin-wide freight delivery scenario. The results show
that when using a relatively large vehicle fleet, passenger waiting time statistics barely change. However, it has to be noted that the
study should be repeated with different (smaller) fleet sizes. A rough cost analysis for the freight operator suggests that there is a
large saving potential when using autonomous On-Demand vehicles instead of an owned fleet. Because of the uncertainty of price
composition, further studies to quantify this saving potential have to be made.
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1. Introduction

In recent years, (autonomous) ride-pooling fleets as a part of Mobility-as-a-Service (MaaS) have been a focus of
transportation research [1, 7, 14]. While pooling services using conventional cars operate in various cities [14, 9],
pilot projects on the operation of autonomous vehicle fleets are conducted [15]. As driver wages constitute a major
part of operation costs [16, 4], automation might be the key factor for demand-responsive transport (DRT) systems to
establish themselves in the long run. Serving the current urban passenger mobility demand with MaaS systems could
reduce the overall number of vehicles in the system by a factor of ten compared to individual motorized transport [2].
Despite this fact, there still is unused capacity in MaaS systems, as passenger demand commonly shows strong peak
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times and many vehicles remain idle during off-peak times [1]. Apart from passenger transport, Mobility-On-Demand
(MOD), which is to be differentiated from MaaS, also affects freight transport [24]: The market responds to the in-
creasing demand related to e-commerce with short-term deliveries, made feasible through innovative technological
concepts such as including drones and robots on the last mile and automates parcel lockers [27, 23, 19]. In Germany,
the parcel delivery market has grown by 67% within 10 years and is expected to grow further [8]. Automation and
digitization not only support the thrive of MOD, but are influencing the entire supply-chain, reducing operational costs
and increasing system efficiency. Potentially, deliveries can be shifted into off-peak transport times in order to reduce
delivery travel times and relieve the load on the transport network during peak times. Trying to combine the develop-
ments of automation, the increase in (commercial) transport demand, and the thrive of MOD and MaaS respectively,
various institutions including major car manufacturers have developed automated, modular vehicle concepts that aim
to serve multiple transport segments [10, 26]. A previous study [21] shows that these concepts provide the potential to
reduce the overall number of vehicles in the system. However, the study is conducted in the context of private vehicle
ownership and stronger effects are expected for commercial fleets. This is the starting point for the present study. In
contrast to Schlenther et al. [21], modular vehicles are assumed to be run as an MOD fleet, which requires different
algorithms for operation (e.g. dispatch of vehicles to customers and parcels etc.). For that, vehicles are assumed to
deliver either persons or parcels at a time. The simulation-based approach is applied to the use case of Berlin with
synthetically generated demands for passengers and parcel delivery and impacts on passengers, fleet operators and
freight tours are analyzed.

2. Methodology

The MATSim framework. With MATSim!' (stands for Multi-Agent-Transport-Simulation) there already exists a pos-
sibility to simulate large-scale traffic models. Its open-source implementation in Java offers high accessibility and
expandability [11]. Each MATSim run has an initial (transport) demand, which is represented by a synthetic popu-
lation of so-called agents, to begin with. Each agent possesses a certain number of daily plans, each consisting of
activities, legs and a corresponding score. The score is the major criteria of whether a plan gets selected or not. After
executing the actual daily plans in the physical traffic simulation, each performed plan receives a score. When the
scoring process is done, a certain share of agents is allowed to adapt their executed plan. Through transformation the
following (plan-)elements can be changed: departure time, route, transport mode or destination. Usually, the circle of
traffic simulation, scoring and replanning is repeated until a stochastic user-equilibrium is achieved or the maximum
number of iterations is reached.

One out of two MATSim extensions used in this study is the DRT module that is used for simulating demand-
responsive transport services where vehicles are planned using dynamic routing algorithms [3]. Each vehicle in the
DRT fleet has a schedule, that is re-computed by the optimization algorithm (optimizer) [17] in response to changes
in the state of the system (demand, supply and traffic). Usually, ride requests are created by passengers at the event of
their departure from their origin activity, only.

The second extension used is MATSim’s freight module, with which tour planning of freight operators can be
simulated. It introduces a structural representation of freight companies, the carrier agent, with vehicle fleet, depot(s)
and delivery orders. Delivery orders contain a good’s quantity, source, destination and delivery time window [29].
The actual planning of tours is done by jsprit [12], an open-source software, which iteratively solves vehicle routing
problems. Therefore, a vehicle fleet and freight demand is needed, represented by services that hold information on
customer time windows (See Section 3), within which the service has to be supplied.

Assumptions. Before combining the aforementioned freight and DRT extensions, three key assumptions had to be
made.

1. For the policy cases, it is assumed that all carriers as the representation of freight companies do not possess

their own vehicle fleet. Instead, they hire autonomous vehicles from a DRT fleet operator just like a usual DRT
customer would do, too. Therefore, an arrangement between the two companies is needed, which settles the

! https://github.com/matsim-org/matsim-1ibs/ and https://matsim.org/
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processing of a certain mandatory number of daily freight tours. On the freight companies side, said agreement
ensures the delivery of their daily freight demand while saving a significant share of overhead costs. From the
perspective of the DRT service providers, it offers a chance to reduce idle vehicle times by keeping them busy.

2. Itis assumed that despite the additional demand induced by daily freight tours, the priority of the MOD company
will remain on passenger traffic. This is because passengers are more time sensitive than the delivery of parcels.
Additionally, nowadays companies like Uber, Lyft, etc. are already focused on offering passenger services, so it
is expected that they want to keep said focus. The inclusion of freight traffic has the consequences that a vehicle
can only be available for freight tours if it is not currently carrying a passenger. Moreover, it can never transport
people and cargo at the same time. In this study, we assume modular vehicle concepts such that retooling is
required before and after each freight tour.

3. In this research, the planning of freight tours is carried out offline, meaning beforehand, e.g. at midnight. This
is mainly because of the complexity, which online tour planning would bring to the table. This research aims
to explore the potential of using On-Demand-vehicles for person and freight transport, so it is held as simple as
possible.

The addition of the freight demand under the above assumptions requires an adaption of the used dispatch algorithm
within the DRT module. To be able to distribute freight demand among vehicles, taking into account the priority of
passenger transport, an additional operational logic is needed, for switching vehicles between modes (passenger mode
or freight mode). The freight tours are fed into the DRT optimizer through a separate request channel, as shown in
Figure 1. From tour planning, the desired tour start time can be derived and offset by the time for retooling the vehicle.
Tour requests are assumed to be submitted to the DRT optimizer with a look-ahead. For this work, we use a value of 7
minutes. In each time step, all passenger requests get handled first. If, after that, the share of idle vehicles in the DRT
fleet is higher than a configurable value, unprocessed freight requests are handled in the order of their submission
times until the share of idle vehicles is undercut or no freight request remains. This way, freight requests remain in
the pipeline for a maximum duration of the submission look-ahead, before they are finally rejected. Otherwise, they
would be performed later than planned. In this work, no replanning of (rejected) tours is conducted. The priority of
passenger transport is imposed by scheduling freight requests only if a certain share of the fleet is idle. However, it
means that a certain share of the fleet might remain unproductive even though there are more (freight requests). The
value probably needs calibration for different use cases. For this work, a value of 50% is used.

Freight Demand

Manager

Passenqer Demand

Vehicle Fleet

Fig. 1: Structure of the proposed extension to the DRT module within MATSim [17]

3. Simulation Setup

The dispatch algorithm presented in Section 2 for managing both passenger and freight demand is applied to the
MATSim Open-Berlin-Scenario® with a sample size of 10% [28]. The parcel demand and DRT fleet are added, with
the assumption that the additional traffic caused for freight purposes has no remarkable congestion effect, as the
number of vehicles to serve it is relatively small. The following section describes the adaption of the scenario as well
as additional assumptions that had to be made.

Vehicle Configuration. As mentioned before, for the present study an autonomous vehicle fleet is assumed. One ex-
emplary vehicle concept is the U-Shift, which among others was developed by the German Aerospace Center (DLR).

2 https://github.com/matsim-scenarios/matsim-berlin/
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The U-Shift’s drive unit (driveboard) works without a driver and is fully electric. It has an integrated lifting system
through which the capsules designed for a wide variety of purposes can be picked up and dropped off. Possible use
cases among others include public transport, parcel delivery or waste disposal [5]. Due to the detailed documentation
of the concept, the U-Shift serves as a template for many vehicle-related parameters of this investigation. The dimen-
sions of the cargo capsule are most decisive as they are crucial for how many packages per vehicle can be transported.
The U-Shift’s cargo capsule measures 2.60 x 1.25 x 2.40 m, which means there is space for 3 Euro pallets [5]. With
a medium package size of 0.60 x 0.30 x 0.15 m [6] and taking into account that due to different package sizes not
a 100% of the storage space can be used, the cargo capsule has a capacity of 216 packages. Regarding the vehicle’s
cost parameters an approach similar to Schlenther et al. [21] is used. In the aforementioned study, the cost rates (See
"Base Case" in Table 2) are derived from a report based on the German Federal Transport Infrastructure Plan (BVWP)
[21, 18].

Freight Demand. The freight demand used in this work arises from calculations by Thaller [25], based on studies by
the Federal Association of Parcel and Express Logistics and the Institute for Applied Logistics at the University of
Wiirzburg-Schweinfurt as well as on census data and statistics published by the Berlin-Brandenburg statistical office
[25]. To model and later simulate the freight demand adequately in the urban area of Berlin similar to Schlenther et al.
[21], it is distributed to freight depots inside the 23 city districts. For each district, a depot is established. The depots
are served by 60 carrier agents, which are created based on Berlin’s official regional statistical zones [22] in order to
reduce computation time compared to 23 carrier agents (based on the city districts) serving rather big areas [21]. The
mapping of the freight demand data to the 60 carrier agents results in a total number of 104,621 delivery services with
service capacities from 1-12 parcels, which make for 394,800 parcels. In contrast to the spatial spread of the freight
demand, the temporal distribution differs to Schlenther et al. [21], as first tests with the exact same time distribution
of the freight demand resulted in unrealistically high duration and travel distances for freight tours. Therefore, the
distribution of the home activity start times in the Open Berlin scenario [28] was analyzed and put into 4h-time bins
(08:00-12:00; 12:00-16:00...) and 2h-time bins (08:00-10:00; 10:00-12:00...), respectively. With the relative weights
of said distribution, the carrier services are then redistributed over the course of the day, see Figure 2. It is assumed
that no deliveries are performed between midnight and 8 a.m.
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Fig. 2: Service distribution from 08:00 to 24:00 in 4h/2h-time bins according to the synthetic population’s activities

DRT Fleet and Demand. Since the original MATSim Open-Berlin-Scenario only considers the bicycle, pedestrian
and public transport modes [28], for further investigations, DRT has to be added as a transport mode. The DRT system
is configured using recent methodologies including rebalancing [20] and a heuristic to estimate the fleet size necessary
to obtain a 95th percentile of passenger waiting at 7 minutes [13]. The service area is set to the city of Berlin, the
passenger price to 1 € per ride plus 0.20 € per kilometer. The results are represented by 118,994 rides realized by a
fleet of 7450 vehicles (with a sample size of 10 %, see above). The fleet size seems to be rather overestimated, as the
peak for the share of vehicles busy with serving customers is at around 30%. However, the focus of the present work
is to investigate whether DRT can be used to serve freight demand at all.



402 Simon Meinhardt et al. / Procedia Computer Science 201 (2022) 398—405

Simulated Scenarios. To be able to understand the impact of the additional freight demand on the traffic system, the
DRT customers and operators, it is necessary to compare it to a base case, in which the freight tours are realized by a
separate fleet. In this case the freight operator possesses a vehicle fleet with human drivers. Additionally, there are two
policy cases. In both, the newly implemented operation logic described in Section 2 is used. The autonomous DRT
fleet not only serves the passenger demand, which is kept constant throughout all simulations, but the parcel demand
as well. The only difference between the two policy cases is the time bin size, in which the vehicles deliver parcels.
Whereas in "Policy Case 4h" the time bin size and therefore temporal distribution of Figure 2 of 4h is used, "Policy
Case 2h" uses time bins of 2h. This means, the only difference of "Policy Case 4h" to the base case is that the freight
demand is served by the DRT fleet and the freight operator abolishes his own fleet.

4. Results

To measure the impact of the fleet abolition by the freight operator, three points of view are taken. First, an analysis
from a general perspective on the autonomous vehicle fleet is carried out. Next, an analysis on how the delivery of the
additional freight demand influences the DRT-users. Finally, a focus on the economic impact is set. Every scenario
defined in Section 3 is considered.

Impact on vehicle fleet. An analysis of the fleet’s general utilization shows that the share of vehicles that remain idle
throughout the entire day, drops from 14% in the base case and "Policy Case 4h" to around 2% in "Policy Case 2h".
Therefore, a look into the fleet-utilization over the course of the day is useful. In Figure 3 every DRT-related action of
a fleet vehicle is marked as "x pax" (x indicating the number of passengers on board) or "RELOCATE" (due to fleet
rebalancing). The remaining action types are freight-related. It can be seen that for both policy cases the peak hours
of freight demand and passenger demand seem to overlap at around respectively 08:00-12:00 and 08:00-10:00. This
overlap causes a greater demand for vehicles at this period of time, which then leads to fewer idle vehicles in general.
Taking into account the high share of delivery services at this time of day (56%, see Figure 2) and the general fact that
Berlin’s daily traffic typically shows a distinctive peak hour in the morning [1], the overlap can already be explained
in advance of the actual simulation.
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Fig. 3: DRT vehicle utilization over the course of the day in the policy cases

Impact on DRT-passengers. As pointed out in Section 2, serving the passenger demand remains the vehicle fleet’s
main focus despite the freight demand being added. Therefore, it is interesting to check if/fhow DRT passengers are
impacted by the addition of the freight demand. The statistics shown in Table 1 suggest that there is no big impact,
although the average waiting time compared to the base case increases by respectively 3 and 6 seconds. The average
in vehicle travel times and average travel distances of the policy cases do only present negligible changes. Regarding
the number of rejected passengers, an increase of respectively 61 and 87 rejections can be observed, but compared to
number of served passengers in each case it can be considered negligible as well.
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Table 1: DRT-customer statistics per scenario

Case avg. wait avg. in vehicle avg. travel dis- served pas- rejected pas-
time [s] travel time [s] tance [m] sengers sengers

Base Case 176 827 4171 119050 153

Policy Case 4h 179 827 4169 118953 214

Policy Case 2h 181 828 4172 118887 240

Financial impact. From the operators’ perspectives it is highly interesting to put a spotlight on the fleet’s driven
distance. In the base case, the autonomous vehicle fleet covers 454,769 km. Through the addition of the parcel demand,
this value rises to 484,955 km in "Policy Case 4h" and 513,234 km in "Policy Case 2h". As the kilometers driven for
passenger services stay similar to the base case this increase can be attributed to the added freight tours. A comparison
of the driven freight distance in the two policy cases shows that the distance traveled approximately doubles. Thus,
the driven freight distance increases from 28,927 km in "Policy Case 4h" to 55,265 km in "Policy Case 2h", which
is due to the narrowing of delivery time windows from 4h to 2h, because the freight operator then has to plan shorter
and more tours at the same time. Whereas in "Policy Case 4h" roughly the same number of tours was planned and
completed as in the "Base Case", the number of planned tours in "Policy Case 2h" is more than doubled (see Table 2).
Further, it is the only investigated case, in which freight tours were rejected ( 15%) The average duration of tours per
case are located around the respective size of time bins (4h/2h), which is due to jsprit’s nature of obeying the vehicles’
time limitations, which equal the corresponding time bins.

With the above statistics, a rough look at the freight operator’s cost can be made. For this purpose, based on the
cost rates given in Table 2, the number of tours performed and elapsed tour duration, the total cost for the "Base
Case" is calculated. Table 2 reveals that more than 67% of the freight operator’s cost is related to driver wages. Thus,
automation by itself brings a huge saving potential. In order to distinguish effects from automation and fleet abolition,a
"Base Case automated" that was not simulated is introduced, which is equivalent to the "Base Case" without driver
wages, i.e. time costs. For the policy cases, the same way cost rate is assumed, meaning that additional costs for
technological advances (like a modular vehicle concept) are balanced with savings on fuel and energy and other
effects. Then, the total costs of the freight operator in the policy cases are set to total costs in "Base Case automated",
deducted by the way costs and divided by the number of tours performed in order to determine the break-even point
for the fix costs per tour.

The results suggest that, assuming the same vehicle cost rates, the abolition of the fleet has no effect on the costs
per tour in the "Policy Case 4h", where vehicle time windows were not touched for tour planning. As the number of
tours is roughly twice as high for "Policy Case 2h", the costs per tour are roughly halved. However, in the policy cases,
the freight operator would not have to entirely account for fleet overhead costs and only pay them partially via a fixed
fare per tour, charged by the DRT operator. Moreover, taking into account that DRT passengers only pay a fraction of
the calculated fixed cost (Compare cost components of Section 3 and Table 2) it can be assumed that the actual cost
rate per tour (or fee paid by freight operator to the DRT operator) is lower than in the base case, leading to a saving
potential for the freight operator.

5. Discussion and Outlook

As the researched scenario lays in the future, it strongly depends on multiple parameters based and assumptions.
Figure 3 shows that even at peak hours the share of idle fleet vehicles is never less than 45% and 36%, respectively. This
means that the simulated autonomous fleet is rather too large, which is why there is almost no impact by the additional
freight tours on the DRT passengers. Further studies with different fleet sizes could deliver a better understanding of
how large the impact on passengers really is.

Further, the parameters used for the cost analysis are to be questioned. Although it makes sense to adopt the fix,
way and time cost used for tour planning one could imagine the fleet owner (i.e. DRT operator) altering the prices.
As described in Section 4, in this use case, there is a immense difference between fixed cost rates in tour planning
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Table 2: Cost analysis based on operated tours per scenario. Total costs for the policy cases are defined to equal to *Base case automated’ in order
to determine the break-even point for costs per tour. Variable costs consist of (1) distance costs of 0.2522 €/km and (2) of driver wages which are
17.64 €/h for Base case’ and 0 €/h for all other cases. Values marked with (*) are input values for the corresponding scenario.

Case total cost distance time cost fixed cost  # completed fixed cost rate

[€] cost [€] [€] [€] tours [€/tour]
Base Case 252,208 7,117 169,611 75,480 2487 (*)30.35
Base Case automated 82,598 7,117 0 75,480 2487 (*)30.35
Policy Case 4h (*) 82,598 7,295 0 75,302 2509 30.01
Policy Case 2h (*) 82,598 13,938 0 68,660 5074 13.53

and passenger transport. Additional studies with alternative pricing schemes for freight tour planning would assist to
find a realistic and reasonable price equilibrium. On the other hand, the cost analysis displays the huge potential for
savings when using an autonomous multi-purpose vehicle fleet.

Regarding the service distribution displayed in Figure 2 it has to be remarked that in a scenario taking place in the
future such distribution which is based on the agents’ home activities might not be realistic. With delivery boxes being
used more and more, the customers do not need to be at home to receive their packages. This bears the chance to
spread the freight tours all over the day, e.g. using off-peak hours in passenger traffic. This way the impact of freight
tours on passengers can be kept low while also operating with a fleet of smaller size because peak hours of freight and
passenger-tours will not overlap anymore.

Finally, the chosen form of offline tour planning does not provide much flexibility. It is a legit solution when
thinking of the already mentioned delivery boxes, whereto parcels are delivered usually successful, but still online tour
planning offers more opportunities to react dynamically. E.g. one could implement a certain number of unsuccessful
deliveries or even canceled tours which have to be re-planned during the day (online). The strongest argument for
online tour planning is an additional ability to reply to changes in passenger demand. With historical fleet utilization
data just like in Figure 3 favorable, off-peak time slots for freight tours can be found in advance. In addition, quick
reactions to increased demands are possible by just pushing freight tours to a likely less requested time slot in the
future.

6. Conclusion

This research proposes a methodology to simulate autonomous On-Demand vehicle fleets that serve both freight
and passenger transport. The vehicle fleet’s utilization can be increased in comparison to passenger-only operation.
It is shown that it is possible to serve freight and passenger demand with a single multi-purpose autonomous vehicle
fleet. Moreover, this operation pattern possibly offers savings for freight operators while On-Demand fleet operators
may also take advantage of additional and possibly regular income by providing the freight company with vehicles.
As pricing schemes remain unclear, the quantity of savings is still a matter to be researched. In the investigated use
case, the impact of the additional freight demand on passengers is minimal due to a large fleet size. Average waiting
times, travel distances and travel times are held at the same quality.
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