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Abstract 
Serving both passenger and freight demand with the same vehicle fleet is an ambition that led to the development of several 

innovative vehicle concepts [1, 2]. This study proposes a simulation-based methodology to investigate the execution of 

freight tours with an On-Demand fleet of autonomous, modular vehicles while giving priority to passenger transport. 

Based on assumptions regarding the operational scheme, tour pricing and delivery time windows, the software Multi-

Agent Transport Simulation (MATSim) is extended. The developed methodology is then applied to a Berlin-wide freight 

delivery scenario. The results show that when using a relatively large vehicle fleet, passenger wait time statistics barely 

change. A rough cost analysis for the freight operator suggests that there is a large saving potential when using autonomous 

On-Demand vehicles instead of an owned fleet. Because of the uncertainty of price composition, further studies to quantify 

this saving potential have to be made. As a sensitivity analysis, various fleet configurations are simulated to determine a 

fleet size, which is potentially suitable for a real world scenario. 

Keywords: Autonomous Vehicles, Mobility-On-Demand, Demand-Responsive Transport, Freight Transport, Parcel 

Delivery, Multi-Purpose Vehicle Fleets, Transport Simulation, Agent-based Simulation 
 

  

1. Introduction 

This paper is an extended version of ’Simulation of On-Demand 

Vehicles that serve both Person and Freight Transport’, which 

originally was published at ANT2022 

(https://www.sciencedirect.com/science/article/pii/S187705092

2004665). 

In recent years, (autonomous) ride-pooling fleets as a part of 

Mobility-as-a-Service (MaaS) have been a focus of 

transportation research [3, 4]. While pooling services using 

conventional cars operate in various cities [3, 5], pilot projects 

on the operation of autonomous vehicle fleets are conducted [6]. 

As driver wages constitute a major part of operation costs [7, 8], 

automation might be the key factor for demand-responsive 

transport (DRT) systems to establish themselves in the long run. 

Serving the current urban passenger mobility demand with 

MaaS systems could reduce the overall number of vehicles in 

the system by a factor of ten compared to individual motorized 

transport [9]. Despite this fact, there still is unused capacity in 

MaaS systems, as passenger demand commonly shows strong 

peak times and many vehicles remain idle during off-peak times 

[10]. Apart from passenger transport, Mobility-On-Demand 

(MOD), which is to be differentiated from MaaS, also affects 

freight transport [11]: The market responds to the increasing 

demand related to e-commerce with short-term deliveries, made 

feasible through innovative technological concepts such as 

including drones and robots on the last mile and automates 

parcel lockers [12–14]. In Germany, the parcel delivery market 

has grown by 67% within 10 years and is expected to grow 

further [15]. Automation and digitization not only support the 

thrive of MOD, but are influencing the entire supply-chain, 

reducing operational costs and increasing system efficiency. 

Potentially, deliveries can be shifted into off -peak transport 

times in order to reduce delivery travel times and relieve the load 

on the transport network during peak times. Trying to combine 

the developments of automation, the increase in (commercial) 

transport demand, and the thrive of MOD and MaaS 

respectively, various institutions including major car 

manufacturers have developed automated, modular vehicle 

concepts that aim to serve multiple transport segments [1, 2]. A 

previous study [16] shows that these concepts provide the 

potential to reduce the overall number of vehicles in the system. 

However, the study is conducted in the context of private vehicle 

ownership and stronger effects are expected for commercial 

fleets. This is the starting point for the present study. In contrast 

to Schlenther et al. [16] [21], modular vehicles are assumed to 

be run as an MOD fleet, which requires different algorithms for 

operation (e.g. dispatch of vehicles to customers and parcels 

etc.). For that, vehicles are assumed to deliver either persons or 

parcels at a time. The simulation-based approach is applied to 

the use case of Berlin with synthetically generated demands for 
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passengers and parcel delivery and impacts on passengers, fleet 

operators and freight tours are analyzed. 

2. Methodology 

2.1. The MATSim framework 

 

With MATSim (stands for Multi-Agent-Transport-Simulation; 

see https://github.com/matsim-org/matsim-libs/ and 

https://matsim.org/) there already exists a possibility to simulate 

large-scale traffic models. Its open-source implementation in 

Java offers high accessibility and expandability [17]. Each 

MATSim run has an initial (transport) demand, which is 

represented by a synthetic population of so-called agents, to 

begin with. Each agent possesses a certain number of daily 

plans, each consisting of activities, legs and a corresponding 

score. The score is the major criteria of whether a plan gets 

selected or not. After executing the actual daily plans in the 

physical traffic simulation, each performed plan receives a 

score. When the scoring process is done, a certain share of agents 

is allowed to adapt their executed plan. Through transformation 

the following (plan-)elements can be changed: departure time, 

route, transport mode or destination. Usually, the circle of traffic 

simulation, scoring and replanning is repeated until a stochastic 

user-equilibrium is achieved or the maximum number of 

iterations is reached. 

One out of two MATSim extensions used in this study is the 

DRT module that is used for simulating demand-responsive 

transport services where vehicles are planned using dynamic 

routing algorithms [18]. Each vehicle in the DRT fleet has a 

schedule, that is re-computed by the optimization algorithm 

(optimizer) [19] in response to changes in the state of the system 

(demand, supply and traffic). Usually, ride requests are created 

by passengers at the event of their departure from their origin 

activity, only. 

The second extension used is MATSim’s freight module, with 

which tour planning of freight operators can be simulated. It 

introduces a structural representation of freight companies, the 

carrier agent, with vehicle fleet, depot(s) and delivery orders. 

Delivery orders contain a good’s quantity, source, destination 

and delivery time window [20]. The actual planning of tours is 

done by jsprit [21], an open-source software, which iteratively 

solves vehicle routing problems. Therefore, a vehicle fleet and 

freight demand is needed, represented by services that hold 

information on customer time windows (See Section 3), within 

which the service has to be supplied. 

2.2. Assumptions 

 

Before combining the aforementioned freight and DRT 

extensions, three key assumptions had to be made. 

1. For the policy cases, it is assumed that all carriers as the 

representation of freight companies do not possess their 

own vehicle fleet. Instead, they hire autonomous vehicles 

from a DRT fleet operator just like a usual DRT customer 

would do, too. Therefore, an arrangement between the two 

companies is needed, which settles the processing of a 

certain mandatory number of daily freight tours. On the 

freight companies side, said agreement ensures the 

delivery of their daily freight demand while saving a 

significant share of overhead costs. From the perspective 

of the DRT service providers, it offers a chance to reduce 

idle vehicle times by keeping them busy. 

2. It is assumed that despite the additional demand induced 

by daily freight tours, the priority of the MOD company 

will remain on passenger traffic. This is because 

passengers are more time sensitive than the delivery of 

parcels. Additionally, nowadays companies like Uber, 

Lyft, etc. are already focused on offering passenger 

services, so it is expected that they want to keep said focus. 

The inclusion of freight traffic has the consequences that 

a vehicle can only be available for freight tours if it is not 

currently carrying a passenger. Moreover, it can never 

transport people and cargo at the same time. In this study, 

we assume modular vehicle concepts such that retooling is 

required before and after each freight tour. 

3. In this research, the planning of freight tours is carried out 

offline, meaning beforehand, e.g. at midnight. This is 

mainly because of the complexity, which online tour 

planning would bring to the table. This research aims to 

explore the potential of using On-Demand-vehicles for 

person and freight transport, so it is held as simple as 

possible. 

The addition of the freight demand under the above assumptions 

requires an adaption of the used dispatch algorithm within the 

DRT module. To be able to distribute freight demand among 

vehicles, taking into account the priority of passenger transport, 

an additional operational logic is needed, for switching vehicles 

between modes (passenger mode or freight mode). The freight 

tours are fed into the DRT optimizer through a separate request 

channel, as shown in Figure 1. From tour planning, the desired 

tour start time can be derived and offset by the time for retooling 

the vehicle. Tour requests are assumed to be submitted to the 

DRT optimizer with a look-ahead. For this work, we use a value 

of 7 minutes. In each time step, all passenger requests get 

handled first. If, after that, the share of idle vehicles in the DRT 

fleet is higher than a configurable value, unprocessed freight 

requests are handled in the order of their submission times until 

the share of idle vehicles is undercut or no freight request 

remains. This way, freight requests remain in the pipeline for a 

maximum duration of the submission look-ahead, before they 

are finally rejected. Otherwise, they would be performed later 

than planned. In this work, no replanning of (rejected) tours is 

conducted. The priority of passenger transport is imposed by 

scheduling freight requests only if a certain share of the fleet is 

idle. However, it means that a certain share of the fleet might 

remain unproductive even though there are more (freight 

requests). The value probably needs calibration for different use 

cases. For this work, a value of 50% is used. 

 

 
Figure 1. Structure of the proposed extension to the DRT module 

within MATSim 

3. Simulation Setup 

The dispatch algorithm presented in Section 2 for managing both 

passenger and freight demand is applied to the MATSim Open-

Berlin-Scenario (https://github.com/matsim-scenarios/matsim-

berlin/) with a sample size of 10% [22]. The parcel demand and 

DRT fleet are added, with the assumption that the additional 

traffic caused for freight purposes has no remarkable congestion 

effect, as the number of vehicles to serve it is relatively small. 

The following section describes the adaption of the scenario as 

well as additional assumptions that had to be made. 
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3.1. Vehicle Configuration 

 

As mentioned before, an autonomous vehicle fleet is assumed 

for the present study. One exemplary vehicle concept is the U-

Shift, which among others was developed by the German 

Aerospace Center (DLR). The U-Shift’s drive unit (driveboard) 

works without a driver and is fully electric. It has an integrated 

lifting system through which the capsules designed for a wide 

variety of purposes can be picked up and dropped off. Possible 

use cases among others include public transport, parcel delivery 

or waste disposal [23]. Due to the detailed documentation of the 

concept, the U-Shift serves as a template for many vehicle-

related parameters of this investigation. The dimensions of the 

cargo capsule are most decisive as they are crucial for how many 

packages per vehicle can be transported. The U-Shift’s cargo 

capsule measures 2.60 x 1.25 x 2.40 m, which means there is 

space for 3 Euro pallets [23]. With a medium package size of 

0.60 x 0.30 x 0.15 m [24] and taking into account that due to 

different package sizes not a 100% of the storage space can be 

used, the cargo capsule has a capacity of 216 packages. 

Regarding the vehicle’s cost parameters an approach similar to 

Schlenther et al. [16] is used. In the aforementioned study, the 

cost rates (See "Base Case" in Table 2) are derived from a report 

based on the German Federal Transport Infrastructure Plan 

(BVWP) [16, 25]. 

3.2. Freight Demand 

 

The freight demand used in this work arises from calculations 

by Thaller [26], based on studies by the Federal Association of 

Parcel and Express Logistics and the Institute for Applied 

Logistics at the University of Würzburg-Schweinfurt as well as 

on census data and statistics published by the Berlin-

Brandenburg statistical office [26]. To model and later simulate 

the freight demand adequately in the urban area of Berlin similar 

to Schlenther et al. [16], it is distributed to freight depots inside 

the 23 city districts. For each district, a depot is established. The 

depots are served by 60 carrier agents, which are created based 

on Berlin’s official regional statistical zones [27] in order to 

reduce computation time compared to 23 carrier agents (based 

on the city districts) serving rather big areas [16]. The mapping 

of the freight demand data to the 60 carrier agents results in a 

total number of 104,621 delivery services with service capacities 

from 1-12 parcels, which make for 394,800 parcels. In contrast 

to the spatial spread of the freight demand, the temporal 

distribution differs to Schlenther et al. [16], as first tests with the 

exact same time distribution of the freight demand resulted in 

unrealistically high duration and travel distances for freight 

tours. Therefore, the distribution of the home activity start times 

in the Open Berlin scenario [22] was analyzed and put into 4h-

time bins (08:00-12:00; 12:00-16:00...) and 2h-time bins (08:00-

10:00; 10:00-12:00...), respectively. With the relative weights of 

said distribution, the carrier services are then redistributed over 

the course of the day, see Figure 2. It is assumed that no 

deliveries are performed between midnight and 8 a.m. 

 

 

 
Figure 2. Service distribution from 08:00 to 24:00 in 4h / 2h-time 

bins according to the synthetic population’s activities 

3.3. DRT Fleet and Demand 

 

Since the original MATSim Open-Berlin-Scenario only 

considers the bicycle, pedestrian and public transport modes 

[22], for further investigations, DRT has to be added as a 

transport mode. The DRT system is configured using recent 

methodologies including rebalancing [28] and a heuristic to 

estimate the fleet size necessary to obtain a 95th percentile of 

passenger wait at 7 minutes [29]. The service area is set to the 

city of Berlin, the passenger price to 1 € per ride plus 0.20 € per 

kilometer. The results are represented by 118,994 rides realized 

by a fleet of 7450 vehicles (with a sample size of 10 %, see 

above). The fleet size seems to be rather overestimated, as the 

peak for the share of vehicles busy with serving customers is at 

around 30%. 

3.4. Simulated Scenarios 

 

To be able to understand the impact of the additional freight 

demand on the traffic system, the DRT customers and operators, 

it is necessary to compare to a base case, in which the freight 

tours are realized by a separate fleet. In this case the freight 

operator possesses a vehicle fleet with human drivers. 

Additionally, there are two policy cases. In both, the newly 

implemented operation logic described in Section 2 is used. The 

autonomous DRT fleet not only serves the passenger demand, 

which is kept constant throughout all simulations, but the parcel 

demand as well. The only difference between the two policy 

cases is the time bin size, in which the vehicles deliver parcels. 

Whereas in "Policy Case 4h" the time bin size and therefore 

temporal distribution of Figure 2 of 4h is used, "Policy Case 2h" 

uses time bins of 2h. This means, the only difference of "Policy 

Case 4h" to the base case is that the freight demand is served by 

the DRT fleet and the freight operator abolishes his own fleet. 

Firstly, the DRT fleet size is kept constant at rather high level, 

in order to investigate the feasability of the combined service of 
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passenger and freight demand. This is described in Section 4. In 

Section 5, various fleet sizes are simulated in order to determine 

the relation of fleet size, passenger demand, freight demand, 

wait times and the rejection rate. 

4. Fixed Fleet Size Analysis 

To measure the impact of the fleet abolition by the freight 

operator, three points of view are taken. First, an analysis from 

a general perspective on the autonomous vehicle fleet is carried 

out. Next, an analysis on how the delivery of the additional 

freight demand influences the DRT-users. Finally, a focus on the 

economic impact is set. Every scenario defined in Section 3 is 

considered. 

4.1. Impact on vehicle fleet 

 

An analysis of the fleet’s general utilization shows that the share 

of vehicles that remain idle throughout the entire day, drops from 

14% in the base case and "Policy Case 4h" to around 2% in 

"Policy Case 2h". Therefore, a look into the fleet-utilization over 

the course of the day is useful. In Figure 3 every DRT-related 

action of a fleet vehicle is marked as" x pax" (x indicating the 

number of passengers on board) or "RELOCATE" (due to fleet 

rebalancing). The remaining action types are freight-related. It 

can be seen that for both policy cases the peak hours of freight 

demand and passenger demand seem to overlap at around 

respectively 08:00-12:00 and 08:00-10:00. This overlap causes 

a greater demand for vehicles at this period of time, which then 

leads to fewer idle vehicles in general. Taking into account the 

high share of delivery services at this time of day (56%, see 

Figure 2) and the general fact that Berlin’s daily traffic typically 

shows a distinctive peak hour in the morning [10], the overlap 

could have been expected in advance of the actual simulation. 

 

 

 
Figure 3. DRT vehicle occupancy over the course of the day in the 

policy cases 

 

 

 

4.2. Impact on DRT-passengers 

 

As pointed out in Section 2, serving the passenger demand 

remains the vehicle fleet’s main focus despite the freight demand 

being added. Therefore, it is interesting to check whether DRT 

passengers are impacted by the addition of the freight demand 

and if yes, how. The statistics shown in Table 1 suggest that 

there is no big impact, although the average wait time compared 

to the base case increases by respectively 3 and 6 seconds. The 

average in vehicle travel times and average travel distances of 

the policy cases do only present negligible changes. Regarding 

the number of rejected passengers, an increase of respectively 

61 and 87 rejections can be observed, but compared to number 

of served passengers in each case it can be considered negligible 

as well. 

 
Table 1. DRT-customer statistics per scenario 

Case avg. 
wait 

time 

[s] 

avg. in 
vehicle 

time [s] 

avg. travel 
distance 

[m] 

served 
passengers 

rejected 
passengers 

Base 
Case 

176 827 4171 119050 153 

Policy 

Case 4h 
179 827 4169 118953 214 

Policy 

Case 2h 
181 828 4172 118887 240 

 

4.3. Financial impact 

 

From the operators’ perspectives it is highly interesting to put a 

spotlight on the fleet’s driven distance. In the base case, the 

autonomous vehicle fleet covers 454,769 km. Through the 

addition of the parcel demand, this value rises to 484,955 km in 

"Policy Case 4h" and 513,234 km in "Policy Case 2h". As the 

kilometers driven for passenger services stay similar to the base 

case this increase can be attributed to the added freight tours. A 

comparison of the driven freight distance in the two policy cases 

shows that the distance traveled approximately doubles. Thus, 

the driven freight distance increases from 28,927 km in "Policy 

Case 4h" to 55,265 km in "Policy Case 2h", which is due to the 

narrowing of delivery time windows from 4h to 2h, because the 

freight operator then has to plan shorter and more tours at the 

same time. Whereas in "Policy Case 4h" roughly the same 

number of tours was planned and completed as in the "Base 

Case", the number of planned tours in "Policy Case 2h" is more 

than doubled (see Table 2). Further, it is the only investigated 

case, in which freight tours were rejected ( 15%) The average 

duration of tours per case are located around the respective size 

of time bins (4h/2h), which is due to jsprit’s nature of obeying 

the vehicles’ time limitations, which equal the corresponding 

time bins. 

With the above statistics, a rough look at the freight operator’s 

cost can be made. For this purpose, based on the cost rates given 

in Table 2, the number of tours performed and elapsed tour 

duration, the total cost for the "Base Case" is calculated. Table 2 

reveals that more than 67% of the freight operator’s cost is 

related to driver wages. Thus, automation by itself brings a huge 

saving potential. In order to distinguish effects from automation 

from fleet abolition, a "Base Case automated" that was not 

simulated is introduced, which is equivalent to the "Base Case" 

without driver wages, i.e. time costs. For the policy cases, the 

same way cost rate is assumed, meaning that additional costs for 

technological advances (like a modular vehicle concept) are 

balanced with savings on fuel and energy and other effects. 

Then, the total costs of the freight operator in the policy cases 
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are set to total costs in "Base Case automated", deducted by the 

way costs and divided by the number of tours performed in order 

to determine the break-even point for the fix costs per tour. 

The results suggest that, assuming the same vehicle cost rates, 

the abolition of the fleet has no effect on the costs per tour in the 

"Policy Case 4h", where vehicle time windows were not touched 

for tour planning. As the number of tours is roughly twice as 

high for "Policy Case 2h", the costs per tour are roughly halved. 

However, in the policy cases, the freight operator would not 

have to entirely account for fleet overhead costs and only pay 

them partially via a fixed fare per tour, charged by the DRT 

operator. Moreover, taking into account that DRT passengers 

only pay a fraction of the calculated fixed cost (Compare cost 

components of Section 3 and Table 2) it can be assumed that the 

actual cost rate per tour (or fee paid by freight operator to the 

DRT operator) is lower than in the base case, leading to a saving 

potential for the freight operator. 

 
Table 2. Cost analysis based on operated tours per scenario. Total 

costs for the policy cases are defined to equal to ’Base case 

automated’ in order to determine the break-even point 

for costs per tour. Variable costs consist of (1) distance 

costs of 0.2522 €/km and (2) of driver wages which are 

17.64 €/h for ’Base case’ and 0 €/h for all other cases. 

Values marked with (*) are input values for the 

corresponding scenario. 

  
Base 

Case 

Base Case 

automated 

Policy 

Case 4h 

Policy 

Case 2h 

total cost [€] 252,208 82,598 

(*) 

82,598 

(*) 

82,598 

distance cost [€] 7,117 7,117 7,295 13,938 

time cost [€] 169,611 0 0 0 

fixed cost [€] 75,480 75,480 75,302 68,660 

# completed tours 2,487 2,487 2,509 5,074 

fixed cost rate 

[€/tour] (*) 30.35 (*) 30.35 30.01 13.53 

 

4.4. Discussion 

 

As the researched scenario lays in the future, it strongly depends 

on multiple parameters based and assumptions. Figure 3 shows 

that even at peak hours the share of idle fleet vehicles is never 

less than 45% and 36%, respectively. This means that the 

simulated autonomous fleet is rather too large, which is why 

there is almost no impact by the additional freight tours on the 

DRT passengers. In Section 5, the fleet size is varied in order to 

understand how large the impact on passengers really is. 

Further, the parameters used for the cost analysis are to be 

questioned. Although it makes sense to adopt the fi x, way and 

time cost used for tour planning one could imagine the fleet 

owner (i.e. DRT operator) altering the prices. As described in 

Section 4, in this use case, there is an immense difference 

between fixed cost rates in tour planning and passenger 

transport. Additional studies with alternative pricing schemes 

for freight tour planning would assist to find a realistic and 

reasonable price equilibrium. On the other hand, the cost 

analysis displays the huge potential for savings when using an 

autonomous multi-purpose vehicle fleet. 

Regarding the service distribution displayed in Figure 2, it has 

to be remarked that in a scenario taking place in the future such 

distribution which is based on the agents’ home activities might 

not be realistic. With delivery boxes being used more and more, 

the customers do not need to be at home to receive their 

packages. This bears the chance to spread the freight tours all 

over the day, e.g. using off -peak hours in passenger traffic. This 

way the impact of freight tours on passengers can be kept low 

while also operating with a fleet of smaller size because peak 

hours of freight and passenger-tours will not overlap anymore. 

Finally, the chosen form of offline tour planning does not 

provide much flexibility. It is a legit solution when thinking of 

the already mentioned delivery boxes, whereto parcels are 

delivered usually successful, but still online tour planning offers 

more opportunities to react dynamically. E.g. one could 

implement a certain number of unsuccessful deliveries or even 

canceled tours which have to be re-planned during the day 

(online). The strongest argument for online tour planning is an 

additional ability to reply to changes in passenger demand as 

well as the ability to model same day (good) deliveries. With 

historical fleet utilization data just like in Figure 3 favorable, off 

-peak time slots for freight tours can be found in advance. In 

addition, quick reactions to increased demands are possible by 

just pushing freight tours to a likely less requested time slot in 

the future. 

5. Impact Analysis of Fleet Size 

As shown above, the investigated fleet in section 4 is large 

enough to serve freight tours additionally to the passenger 

demand without having a big impact on the average wait time of 

passengers. One reason for that is the assumed fleet size, which 

is rather large. This chapter aims to understand more of the 

impact of fleet size and the ratio of vehicles reserved for 

passenger demand on the rejection rate of freight tours as well 

as on wait times of passengers. 

5.1. Simulation Setup 

 

In this section, the fleet size is set to 6 different values. For each, 

we vary the ratio of vehicles that is reserved for passenger 

demand between 0.5 and 0.25 (in previous sections this was kept 

constant at 0.5). Additionally, for each of the 6 fleet sizes, a base 

case is simulated, which is equivalent to a reservation ratio of 1. 

This results in 18 simulations overall. The fleet size values are 

determined based on the occupancy of the original base case, 

where only passenger demand is served and the autonomous 

fleet has a maximum occupancy of 2347 vehicles at peak times. 

Including a buffer, 2500 vehicles represent a fleet occupancy of 

100%. The simulated fleet sizes are then increased by 1250 up 

until 5000 (2500, 3750, 5000). If relocating vehicles are 

considered, too, the maximum occupancy lays at 3200 (2979 + 

buff er) vehicles. For this case similar steps are taken (3200, 

4800, 6400). 

5.2. Results 

 

Figure 4 displays the resulting passenger wait time and rejection 

rate of freight tours for each simulation. It is pointed out that in 

general the smaller the fleet the higher the average wait time of 

DRT passengers. In contrast, the passengers’ average travel time 

and average distance only seem to be impacted marginally by 

the reduced fleet sizes. For both passenger and freight transport, 

the scenario with 2500 vehicles is the most extreme one: It 

features very expressive values for the average customer wait 

time and rejection rate of freight tours. As explained in the 

previous paragraph, this is the case where, during the peak hours, 

the fleet is occupied to almost 100% with serving the passenger 

demand only, so the large increase is not surprising. From a fleet 

occupancy standpoint, the scenario with 3750 autonomous 

vehicles and a reservation ratio of 0.25 is interesting. Here, the 

percentage of occupied vehicles in peak hours is almost at 100% 

while about 28% of the planned freight tours are rejected. This 

of course impacts passenger wait times: compared to the base 



Meinhardt et. al. / Journal of Traffic and Transportation Management, 1 (2022) 00-00 

6 

case an increase of 83 seconds is observed. Although the fleet’s 

occupancy is on a rather high level, due to increased average 

passenger wait time and significant number of rejected tours this 

scenario is not to be considered ideal. Comparing all scenarios 

simulated in this section, the one with 4800 autonomous fleet 

vehicles and a reservation ratio of 25% offers both a rather low 

increase of average passenger wait times (+25s) and a high 

percentage of executed freight tours (94%), while at the same 

time around 80% of fleet vehicles are occupied in peak hours. 

With regard to the given passenger and freight demand, the 

aforementioned scenario seems to be the most suitable 

configuration for a real-world usage. A comparison shows that 

the passenger wait times and freight tour rejection rate are at the 

same level as for the 5000 vehicles scenario whereas the increase 

of both performance indicators for the 3750 vehicles scenario is 

much stronger (see Figure 4). 

 

 
Figure 4. Passenger wait times and rejection rate of freight tour in 

all scenarios 

6. Conclusion 

This research proposes a methodology to simulate autonomous 

On-Demand vehicle fleets that serve both freight and passenger 

transport. The vehicle fleet’s utilization can be increased in 

comparison to passenger-only operation. It is shown that it is 

possible to serve freight and passenger demand with a single 

multi-purpose autonomous vehicle fleet. Moreover, this 

operation pattern possibly offers savings for freight operators 

while On-Demand fleet operators may also take advantage of 

additional and possibly regular income by providing the freight 

company with vehicles. As pricing schemes remain unclear, the 

quantity of savings is still a matter to be researched. In the 

investigated use case for parcel delivery in the city of Berlin, the 

impact of the additional freight demand on passengers is 

minimal when assuming a large fleet size. In this case, average 

wait times, travel distances and travel times are held at the same 

quality. An additional study including different fleet size 

configurations shows that, with help of a systematic approach, a 

fleet configuration, which combines rather high occupancy with 

low increases of average passenger wait times and freight tour 

rejections, can be found. 
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