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ABSTRACT1
In this study, we explore the benefits of pre-booking in the demand-responsive transport (DRT)2
system under various demand densities and patterns. Systematic experiments have been carried out3
on two scenarios based on real-world data, within an agent-based transport simulation framework.4
Representing a small town in a rural region and the center of a metropolis, the two scenarios have5
different characteristics in terms of road network and population model. Within each scenario,6
simulations of DRT systems have been carried out under different demand densities. Simulation7
results suggest that pre-booking can improve the efficiency of the DRT system under all the setups.8
While the total cost savings induced by pre-booking is sensitive to the demand density, a relatively9
constant reduction in the fleet mileage can be realized in both scenarios under different demand10
densities. Another interesting outcome from the experiments is that when the demand density is11
the same, the DRT operation may be slightly more efficient in the small-town scenario. Therefore,12
when a small or medium size DRT system is considered to be introduced to service, the rural area13
may be a better choice than the city center, as long as there are sufficient demands.14

15
Keywords: Demand-Responsive Transport, Pre-booking, Vehicle Routing Problem16
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INTRODUCTION1
The demand-responsive transport service (DRT), also sometimes known as Mobility-on-Demand2
(MoD), is an emerging mode of transport. It is a flexible and efficient transport service (1). At3
the same time, it can also be used to improve the conventional public transport (PT) system, by4
providing first and last mile service (2). Some ambitious studies even propose to use the DRT5
system to replace part or all the private car trips in the cities (3, 4). The DRT system can be an6
efficient mode of transport not only in urban areas, but also in rural regions. For regions with low7
population density, where conventional high frequency PT service cannot be maintained, the DRT8
is one of the promising alternative solutions (5, 6).9

When it comes to the operation of the DRT system, most of the studies in the literature10
focus on spontaneous demands. This is reasonable, because being able to serve spontaneous trips11
is one of the main advantages of the DRT system. But there are also prices for this spontaneity or12
convenience, especially when an efficient operation of the DRT system is desired. Incorporating13
ride-pooling in the DRT system is one of the frequently proposed ideas to improve the efficiency14
of the DRT system. Several advanced algorithms, such as (7, 8) have been proposed. But due to15
the nature of the problem, the computational tractability can easily be lost as the size of the DRT16
system grows. Furthermore, the benefits of ride-pooling in the spontaneous mode also depends on17
the scenarios (i.e., regions, road networks, demands). Ruch et al. (9) show that the good perfor-18
mance of various ride-pooling algorithms may not be fully reproducible in different scenarios. In19
the end, simple rule-based matching algorithms are usually used, both in real-world operations and20
in simulations.21

Apart from the challenges in the optimization of the passenger assignment problems, empty22
vehicle relocations are usually needed in order to maintain a high level of service when serving23
spontaneous requests. In order to reach a balance of supply (i.e., available vehicles) and demand24
(i.e., passengers) across the service area, empty vehicles need to be sent from places with surplus25
in supply to areas with deficient supply (10). Various studies have shown that, while the service26
quality can be improved, a significantly higher fleet distance needs to be covered, when empty27
vehicle relocation process is enabled (11–13).28

One way to overcome the above-mentioned drawbacks is to incorporate pre-booking into29
the DRT system. With pre-booking, there will be more time to perform the optimization process,30
which usually leads to a better system-wide passenger assignment plan. In addition, the frequency31
of empty vehicle relocation can be significantly reduced. If all the trips are pre-booked, the empty32
vehicle relocation is even no longer necessary. That means the efficiency of the DRT system can be33
improved, and the operational costs can be reduced. One recent study that explores the feasibility34
of transporting school children in rural areas by a fleet of minivans has shown that around 35%35
of the annual total costs can be reduced when the trips are pre-booked and offline optimization is36
performed beforehand (14).37

In the conventional sense, pre-booking means the travel demands need to be submitted38
relatively long time in advance (e.g., one day before), and then the passenger assignment problem39
can be solved completely offline by vehicle routing problem (VRP) algorithms. This may not40
always be feasible, as serving spontaneous trips is sometimes desired in a DRT system. To mitigate41
this problem, we can reduce the length of required pre-booking time. By doing so, we can resume42
part of the spontaneity. For example, if a trip only needs to be pre-booked 30 minutes in advance,43
then the trip may still be considered somewhat spontaneous or semi-spontaneous, as the trip can be44
pre-booked while the passenger is getting ready for the departure. Some recent studies have shown45
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that requesting passengers to pre-book their trips shortly before departure can also significantly1
improve the efficiency of the DRT system (15, 16).2

Despite having the potential to greatly improve the efficiency of the DRT system at the cost3
of minimal inconvenience to the passengers, DRT system with pre-booking is less investigated than4
the other topics in the field. Most of the existing studies either focus on the special demands (such5
as school trips) or the characteristic of the solver in specific test bed scenarios. As is pointed out6
by a study, the statistics of the DRT system are sensitive to the scenarios and do not scale linearly7
to the demand density(17). Those factors may also impact the benefits of the pre-booking. To the8
knowledge of the authors, there is not yet a systematic study on the benefits of pre-booking under9
different operational conditions, such as the scale of the DRT service and the characteristics of the10
population in the service area.11

In this study, we will quantify the benefits of pre-booking in DRT systems under different12
scenarios by conducting a set of comprehensive experiments. Agent-based transport simulations13
will be carried out based on scenarios derived from real-world data. With a small town in a rural14
region and the center of a metropolis, two scenarios with different road network structures and15
demands patterns are included in this study. Furthermore, within each scenario, simulations will be16
carried out based on different demand densities, which correspond to DRT operations in different17
scales.18

METHODOLOGY19
In this study, the Multi-Agent Transport Simulation (MATSim) is used to perform the experi-20
ments. MATSim is an open-source framework for implementing large-scale agent-based transport21
simulations (18). The simulation framework is capable of performing detailed city-scale trans-22
port simulation within relatively short time. Within the MATSim framework, there is an extension23
called MATSim DRT Extension, which enables the simulation of the DRT service (19). In our24
experiments, we use different fixed DRT demands to perform the quantification. Therefore, we25
do not need the standard iterative process in order to reach the dynamic user equilibrium. This26
allows for the implementation of a more complex DRT operational strategy, as well as performing27
extensive experiments on multiple scenarios.28

DRT optimizer for spontaneous trips29
To simulate the DRT system with spontaneous trips (i.e., without pre-booking), we use the default30
passenger matching strategy, the extensive insertion search, in the MATSim DRT extension. The31
algorithm tries to insert each travel request into the schedule of a vehicle when the request is32
submitted, whenever it is feasible. An insertion is feasible if the following conditions are fulfilled:33
the maximum waiting time of the passengers, including the passenger being processed and the34
already accepted passengers waiting to be picked up, must not be exceeded; all the passengers35
must be transported to their destination on or before the latest arrival time; the vehicle must not be36
overloaded at any time. The latest arrival time tarrival,latest of each passenger is calculated as:37

tarrival,latest = tsubmission +α · tdirect +β (1)38

The term tdirect is the time it takes for a DRT vehicle to travel from the origin to the destination of39
the passenger directly. tsubmision is the submission time of the travel request. Parameters α and β40
are parameters that can be tuned. In this study, we set them to 2.0 and 900 seconds respectively.41
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For the maximum waiting time, we set it to 600 seconds (10 minutes) in this study. Note that1
the latest arrival time according to Equation (1) includes the waiting time. In other words, a long2
waiting time until pickup forces the travel time to be shorter. This looks like it is in the interest3
of travelers since it keeps overall times from booking to arrival predictable. It has, however, the4
consequence of relatively many rejections under high load.5

If a request cannot be inserted properly, it will be rejected immediately. In order to reduce6
the rejection caused by the imbalanced distribution of the vehicles, the rebalancing operation (i.e.,7
empty vehicle relocation) is enabled. The min-cost-flow rebalancing strategy proposed in (12) is8
used.9

DRT optimizer for pre-booked trips10
To simulate the DRT system with pre-booking, we use the rolling horizon approach proposed in11
(16). Instead of solving the VRP problem for the whole day, we divide a day into smaller pieces12
and solve them piece by piece. The schematic drawing of the rolling horizon approach is shown13
in Figure 1. There are two key parameters in the rolling horizon approach: the planning horizon14
length th and the update interval tu. In this study, th is set to 30 minutes. That is to say, all the15
passengers departing in the next 30 minutes will be added to the VRP problem and an operational16
plan for the whole fleet will then be computed. It is worth mentioning that the horizontal lines17
in Figure 1, which represent the calculated plans, extend beyond the planning horizon th (i.e., see18
the horizontal line segments with fading color), this is because pick-ups and drop-offs may be19
scheduled after the end of the planning horizon, as long as they are within the pick-up or delivery20
time windows.21

The update interval refers to the frequency at which we solve the VRP problems. Since22
the travel requests enter the system continuously, it is likely that there will be additional requests23
shortly after the horizon ends. As those requests are not considered during the optimization pro-24
cess, the end state of each plan is probably not ideal. Therefore, it makes sense to switch to a new25
plan before reaching the end of the current plan. Based on the findings in a previous study (16),26
we set tu to 20 minutes in this study.27

FIGURE 1: Schematic drawing of the rolling horizon approach

Within each planning horizon, we formulate the passenger assignment problem as an in-28
stance of the standard VRP problem, namely pick-up and delivery problem with time window29
(PDPTW). We integrate jsprit (20), an open-source VRP solver that uses ruin-and-recreate meta-30
heuristic (21), with the MATSim DRT module to solve the problem within each planning hori-31
zon. Unlike the previous implemented integration of jsprit with MATSim in the context of freight32
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transport (22, 23), where jsprit is called before the MATSim iterations, here jsprit runs alongside1
MATSim iterations, with two-way communication.2

The constraints for the PDPTW are similar to those in the DRT optimizer for spontaneous3
trips. Since the trips are now pre-booked, we replace the term submission time (tsubmission) with the4
earliest departure time (tdeparture,earliest). With this, the pick-up time window is defined in Equation5
(2), where γ is set to 10 minutes to match the value of maximum waiting time in the spontaneous6
trips optimizer. The delivery time window is defined in Equation (3), where α and β are also set7
to the same values as in the spontaneous trips optimizer.8

tpickup ∈ [tdeparture,earliest , tdeparture,earliest + γ] (2)9

10

tdelivery ∈ [tdeparture,earliest , tdeparture,earliest +α · tdirect +β ] (3)11

In order to make this setup work, passengers should pre-book their trips at least 30 minutes12
before the departure. In this study, we assume compulsory pre-booking, such that we can estimate13
the maximum potential benefits of pre-booking. It may also be interesting to explore the mixed14
case, where both pre-booked and spontaneous trips present. Yet, that is a complex problem and15
is, therefore, not included in this study. There are attempts to study the efficiency gain at different16
proportion of pre-booked trips. But most of them simply put two types of trips side by side, and17
the benefits of the pre-booking under such setup are not very promising. For example, in the study18
(15), the efficiency of the DRT system may even decrease as the proportion of the pre-booked trips19
increases. This suggests that an additional mechanism is necessary, in order to efficiently serve20
spontaneous trips and pre-booked trips at the same time. Developing such a mechanism can be21
a future research topic. Moreover, in our study, a trip only needs to be pre-booked 30 minutes22
before the departure, making pre-booking compulsory is therefore not a very strong assumption.23
This value also coincides with the minimum advance booking time in some of the commercial24
ride-hailing service providers, such as Uber1.25

EXPERIMENTS AND ANALYSIS26
The DRT operation strategies with and without pre-booking are investigated in two different sce-27
narios with varying demand densities, respectively. In this section, we first elaborate on the sce-28
narios used for the present study. The simulation results are then analyzed and discussed.29

The Kelheim DRT scenario30
The Kelheim DRT scenario is generated based on the MATSim Open Kelheim scenario (24). This31
scenario represents the region of Kelheim county in Bavaria in Germany. Mobile phone trajecto-32
ries and region specific survey data form the basis of the demand model (25, 26). Therefore, it33
includes synthetic agents, who (on a given day) travel into, out of or through the study area. This34
includes long-distance travelers. Overall, the transport model contains 42,455 agents, meaning35
that the model depicts the study area with a scale of 25 % (compared to the number of residents).36
Additionally, long-haul freight traffic is included in the model, which is done by an extraction of37

1https://help.uber.com/riders/article/scheduling-a-ride-in-advance?nodeId=
63165ec1-0910-409e-972f-0b8d8df1a605

https://help.uber.com/riders/article/scheduling-a-ride-in-advance?nodeId=63165ec1-0910-409e-972f-0b8d8df1a605
https://help.uber.com/riders/article/scheduling-a-ride-in-advance?nodeId=63165ec1-0910-409e-972f-0b8d8df1a605
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relevant trips (domestic and international) from the German-wide freight traffic model by (27).1
All simulated vehicles are travelling on a supplied transport network, which is generated based on2
Open Street Map data (28). The MATSim Open Kelheim scenario contains the transport modes3
car (car as a driver), ride (car as a passenger), bike, walk and public transport (pt).4

In the course of the KelRide project,2 a conventional DRT service (KEXI) is added to the5
above transport model (24). Here, the term "conventional" refers to the service with human-driven6
vehicles. The service has been in operation since 2020. To date, there are 3 conventional minivans7
providing DRT service from 6:00 to 22:00, Monday to Saturday. As for the pricing, a single trip8
costs 2 or 3 Euro, depending on the origin and the destination of the trip. Real-world operational9
data since June 2020 has been partially made open-sourced by the KelRide project consortium,10
and there are currently around 160 rides per day.11

Based on the real-world DRT system, a set of hypothetical DRT demands in the area are12
generated. First, a DRT service area is derived from the actual operational scheme of the KEXI13
service. The service area size is 24.1 km2. Figure 2 shows the service area of the Kelheim Scenario14
on the map. We go through all the trips in the population file of the scenario and determine if15
the trip is feasible for DRT. A trip is feasible if both ends of the trip are within the service area.16
Furthermore, trips that are too short (i.e., below 500 meters) are also considered infeasible, as they17
are generally not suitable for the DRT service and may add unnecessary burden to the system.18
In the hypothetical demands model, we extend the service hours to cover the whole day (i.e., 2419
hours) and provide door-to-door service.20

The above-mentioned process results in 8513 potential DRT trips throughout the day in21
the 25% scenario. Note that the open Kelheim scenario is based on the 25% population model,22
therefore 25% is the maximum demand density we can achieve. When all the potential trips in the23
25% scenario are served by the DRT system, it is equivalent to 25% of all the trips happening in24
the service area in the 100% scenario are served by the DRT system, which is already a relatively25
high mode share regarding real world applications. Therefore, it is reasonable to accept that as the26
upper bound in this experiment, and we can sample down the demands from there to generate a27
sequence of demands, representing various adoption rate of the DRT service. To avoid confusion,28
we will use the absolute adoption rate of the DRT system against the 100% scenario. For example,29
5% demands refers to 5% of trips in the real-world population (i.e., 100% scenario) are served by30
the DRT system.31

Starting from the 25% scenario, we generate a sequence of demands, where fewer users32
decide to use the DRT service, namely, 15%, 10%, 5%, 1% and 0.5%. As mentioned above, there33
are currently around 160 trips per day in the actual KEXI operation. This is similar to the number34
of trips in the 0.5% demands. In other words, in the current operation, around 0.5% of the trips35
within the service area are served by the DRT system (i.e., the KEXI service).36

When down-sampling the DRT demands, we used 5 different random seeds for each case.37
This can reduce the impact of the randomness on the outcome of the DRT service. In addition, it38
also serves as a good representation of the day-to-day fluctuation of the travel demands.39

The Manhattan scenario (Midtown + Lower Manhattan)40
Manhattan is a popular scenario for the studies on the operation of DRT service. Many studies, such41
as (7), use Manhattan as the test bed for newly developed DRT operational strategies. Moreover,42

2https://kelride.com/

https://kelride.com/
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FIGURE 2: The service area of Kelheim Scenario on the map

the New York taxi data is openly available. Thus, in this study, we also perform experiments on1
the Manhattan scenario. As opposed to the Kelheim scenario, which models a small town in a2
rural region, the Manhattan scenario locates in the most densely populated area of a metropolis.3
With two different types of scenarios, we can also gain a deeper insight on the benefits of the4
pre-booking in different DRT systems.5

In the MATSim DRT scenario library (29), there is a New York Manhattan scenario for6
DRT studies. The scenario is generated based on the actual operational data of the Yellow Taxi7
Cab data in Manhattan3. The data from the website is disaggregated onto the network generated8
from Open Street Map (28). This leads to 84,421 DRT requests within Manhattan throughout the9
day.10

We have chosen the area consisting of Midtown and Lower Manhattan (Downtown) as the11
service area of our DRT system in this study. This is because the total surface area of that two12
districts (around 23 km2) is similar to the size of service area in the Kelheim scenario (24.1 km2),13
which makes it a suitable scenario to perform comparison. That two districts are also the busiest14
areas of the Manhattan island. Figure 3 illustrates the service area of the DRT system on the Map.15
After the service area is determined, the Manhattan scenario is generated by extracting feasible16
trips from the New York Manhattan scenario in the MATSim DRT scenario Library. The same17
extraction criteria are used as in the Kelheim scenario. In our Midtown and Lower Manhattan18
scenario (hereinafter referred to as Manhattan scenario), there are 38,113 DRT requests.19

Then we perform the down-sampling of the trips. As suggested by previous studies, the20
density of the travel demands has an impact on the DRT service (17). To enable a better compar-21
ison between the Kelheim scenario and the Manhattan scenario, we sample down the Manhattan22
scenarios to achieve a same sequence of demand densities. In the 25% Kelheim scenario, the de-23
mand density is around 350 requests per kilometer square per day. To reach a similar demand24

3https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page


Lu, Schlenther, Meinhardt and Nagel 9

FIGURE 3: The service area of Manhattan Scenario on the map

density, the trips in Manhattan need to be down-sampled to 21.1%. Subsequently, a sequence of1
further down-sampled Manhattan scenarios, namely 12.7%, 8.5%, 4.2%, 0.85% and 0.42% are2
generated to match the sequence of demand densities in the Kelheim side. Same as in the Kelheim3
scenarios, 5 random seeds are used to generate each down-sampled case.4

Evaluation criteria (KPIs)5
In order to compare the performance, a systematic evaluation scheme needs to be defined. In6
the experiments, we will mainly focus on the key aspects that relate to the operational cost, the7
efficiency of the road usage and the service quality. The evaluation criteria used in the experiments8
are summarized below:9

• Required fleet size: minimum required fleet size to serve all the requests without break-10
ing the constraints (i.e., pick-up and drop-off time windows, vehicle capacity constraints).11
In this study, we use a fleet of minivans, each with 8 passenger seats, to serve the DRT12
requests. In order to identify the minimum required fleet, we gradually increase the fleet13
size, until a point where all the requests can be served (i.e., no rejection).14

• Total fleet distance: the total driving distance of the fleet, including empty drive and15
passenger-carrying distance.16

• Distance efficiency: the ratio between total customer direct network travel distance and17
the fleet distance. This value shows how efficient the DRT fleet is. A value greater than18
one indicates that the DRT system is more efficient, in terms of travel distance, compared19
to the hypothetical case that all the passengers drive their private cars to cover the same20
trips. This value can also serve as an indicator of the profitability of the service.21

• In-vehicle delay: the average extra time a passenger spends onboard the vehicle due to22
ride-pooling (i.e., detours, stopping time to pick-up / drop-off other passengers). The23
value is normalized to the duration of the direct trip. If the passenger is directly driven24
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from the origin to destination, it results to 0%.1
• Vehicle level statistics: average number of travel requests served per vehicle per day;2

average driving hours per vehicle per day; average driving distance per vehicle per day.3
• Cost: the daily operational cost for the DRT system. More details for the cost calculation4

will be introduced in the cost calculation section below (Section 4.4). Furthermore, we5
also compare the average cost per request, which is another indicator of the profitability6
of the DRT system.7

Cost calculation model8
We build the cost model based on the cost analysis report from the German Federal Ministry for9
Digital and Transport (30). The vehicle costs mainly consist of three parts: the fixed costs, the10
operational costs and the personnel costs. The fixed costs are incurred by the fleet (e.g., capital11
investment, insurance, administrative) and are independent of the vehicle operations. In Germany,12
there are around 250 working days per year, and that value is used to calculate daily fixed costs13
from the annual values. The operational costs cover the energy (including energy infrastructures)14
and the maintenance costs. The more distance the fleet covers, the higher the operational costs will15
be. The personnel costs cover the salaries of the drivers. The costs are summarized in Table 1. The16
unit is in Euro.17

Since the cost analysis report (30) is based on the value of money in year 2012, the values in18
the table are converted to the value of money in 2012, when necessary. Since we are comparing the19
cost across different scenarios, we will focus on the relative values between different scenarios. For20
the same reason, we also use the same cost structure to perform the cost analysis for the Manhattan21
scenario. The main goal here is therefore not to provide a price estimation for the Manhattan DRT22
system, rather we use the Manhattan scenario to show the impact of different road networks and23
population models on the DRT system.24

Summary of experiment results25
The outcome of the simulation runs for the Kelheim scenario are summarized in the Table 2 - 326
below. Note that the results, except for the 25% case, represent the average value of 5 simulation27
runs based on different input plans generated from different down-sampling seeds.28

The results of the Manhattan scenario are summarized in the Table 4 - 5. In the Manhattan29
scenario, all the values in the table are the average value of 5 simulation runs based on different30
input plans generated from different down-sampling seeds.31

As we are interested in the benefits of pre-booking, several plots are made to demonstrate32
the comparison between the DRT system with spontaneous trips and that with pre-booked trips,33
under different scenarios. Figure 4 shows the benefits of pre-booking in terms of savings in the total34
costs (Figure 4a) and the total fleet mileage (Figure 4b). Figure 5 illustrates the average number of35
requests a vehicle serves during one day under different setups. Figure 6 shows the average cost of36
each request under different setups.37

Analysis of the results38
From the experiment results, we can see that the benefits of the pre-booking can be realized in39
both Kelheim and Manhattan scenarios. The benefits can also be realized under different demand40
densities. When the demand density is greater than 200 departures per square kilometer, then the41
savings of total daily cost can reach 35% – 40%. This value is on par with the savings brought42
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TABLE 1: Cost calculation

Values Units / Remarks
Vehicle Information

Vehicle type Mercedes Vito Tourer Base Edition 114 CDI
Listed price [Euro] 35349 Euro

Fixed costs
Capital costs 1754 Euro per year
Administration costs 3176 Euro per year
Sum 4930 Euro per year
Daily fixed costs 19.72 Euro per working day

Operational costs
Deprecation and maintenance 15.01 Euro per 100 km
Energy costs 8.35 Euro per 100 km
Sum 23.36 Euro per 100 km

Personnel costs
Working hours per vehicle per day 24 Hour
Hourly salary cost 17.64 Euro per hour
Daily cost per vehicle 423.36 Euro per day

TABLE 2: Summary of the system-wide results in Kelheim Scenarios

Scenario Number Demand density Required Fleet distance Distance Cost
of trips [per km2 per day] fleet size [km] efficiency [Euro/day]

Without pre-booking
0.5% 171 7 3.4 1083 0.618 1749
1% 341 14 5.4 1872 0.708 2811
5% 1703 71 15.6 6240 1.053 8307

10% 3406 142 28.8 10719 1.222 15158
15% 5108 212 40 15000 1.310 21077
25% 8513 354 57 22707 1.442 30333

With mandatory pre-booking
0.5% 171 7 3 794 0.842 1507
1% 341 14 4 1362 0.973 2077
5% 1703 71 10.6 4454 1.475 5693

10% 3406 142 18 7558 1.733 9665
15% 5108 212 24.4 10363 1.897 13128
25% 8513 354 36 15690 2.088 19459

by the pre-booking in the school transport service from study (14). This indicates that the good1
performance of pre-booking can also be realized in a general demand pattern.2

While the savings in the total costs are sensitive to the demand density, the savings in total3
fleet distance remain more stable under different demand densities (see Figure 4). Reductions of4
the total fleet distance have positive impact on the traffic and the environment. Therefore, enabling5
pre-booking in the DRT system also has positive social impact, regardless of the demand density.6

Next, we will take a closer look at the impact of the demand density on the benefits of pre-7
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TABLE 3: Summary of performance analysis in Kelheim Scenarios

Scenario Mean direct Mean onboard Mean cost per Vehicle level average daily values
dist. [km] delay trip [Euro] Trips Dist. [km] Driving hours

Without pre-booking
0.5% 3.91 40% 10.10 50.3 318.6 7.42
1% 3.89 64% 8.15 63.1 346.7 8.21
5% 3.86 119% 4.82 109.2 400.0 9.91
10% 3.85 137% 4.40 118.3 372.2 9.39
15% 3.85 146% 4.08 127.7 375.0 9.52
25% 3.85 156% 3.52 149.4 398.4 10.22

With mandatory pre-booking
0.5% 3.91 114% 8.70 57.0 264.8 6.23
1% 3.89 136% 6.02 85.3 340.5 8.21
5% 3.86 157% 3.30 160.6 420.2 10.73
10% 3.85 163% 2.81 189.2 419.9 10.93
15% 3.85 165% 2.54 209.3 424.7 11.15
25% 3.85 165% 2.26 236.5 435.8 11.52

TABLE 4: Summary of the system-wide results in Manhattan Scenarios

Scenario Number Demand density Required Fleet distance Distance Cost
of trips [per km2 per day] fleet size [km] efficiency [Euro/day]

Without pre-booking
0.42% 161 7 3.8 874 0.554 1879
0.85% 325 14 5.8 1477 0.661 2900
4.2% 1602 70 15.4 4914 0.984 7922
8.5% 3241 141 28.4 8618 1.133 14511
12.2% 4841 210 44 12052 1.213 22190
21.1% 8042 350 68.6 18275 1.334 34482

With mandatory pre-booking
0.42% 161 7 2.6 624 0.776 1292
0.85% 325 14 4 1051 0.928 2007
4.2% 1602 70 10.8 3582 1.350 5586
8.5% 3241 141 18.4 6213 1.572 9542
12.2% 4841 210 25.6 8548 1.711 13254
21.1% 8042 350 39.6 12829 1.900 20415

booking, as well as on the whole DRT system. The first thing we can notice is that as the demand1
density increases, the number of trips served by each vehicle per day also increases. Consequently,2
the average work load of each vehicle (i.e., driving hours and distance) also increases. This is the3
case both with and without pre-booking, and in both Kelheim and Manhattan scenario.4

Another interesting fact is that the distance efficiency crosses the 1.0 value as the demand5
density increases in all the cases. Here, the value 1.0 means that the total distance covered by the6
DRT fleet is equal to the sum of the direct travel distance of each individual trip, if private cars are7
used. Therefore, as a rule of thumb, if the DRT trips are introduced to replace private car trips,8
some threshold value in the demand density needs to be reached in order to achieve a positive9
impact on the traffic and environment. The inclusion of pre-booking can effectively reduce this10
threshold value of the demand density.11

A higher distance efficiency and a higher number of daily trips served by each vehicle also12
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TABLE 5: Summary of performance analysis in Manhattan Scenarios

Scenario Mean direct Mean onboard Mean cost per Vehicle level average daily values
dist. [km] delay trip [Euro] Trips Dist. [km] Driving hours

Without pre-booking
0.42% 3.01 30% 11.67 42.4 230.0 6.54
0.85% 3.00 49% 8.92 56.0 254.6 7.26
4.2% 3.02 106% 4.95 104.0 319.1 9.21
8.5% 3.01 125% 4.48 114.1 303.5 8.80
12.2% 3.02 133% 4.58 110.0 273.9 7.96
21.1% 3.03 142% 4.29 117.2 266.4 7.75

With mandatory pre-booking
0.42% 3.01 114% 8.02 61.9 240.0 6.81
0.85% 3.00 129% 6.18 81.3 262.9 7.57
4.2% 3.02 148% 3.49 148.3 331.6 9.66
8.5% 3.01 152% 2.94 176.1 337.7 9.87
12.2% 3.02 154% 2.74 189.1 333.9 9.77
21.1% 3.03 156% 2.54 203.1 324.0 9.49

(a) Costs savings (b) Distance savings

FIGURE 4: Benefits of Pre-booking under different setups

contribute to a lower average price per trip. With a higher demand density, the average cost to serve1
each passenger can be reduced. If the DRT operator desires to remain profitable, then the average2
fare collected from the trips needs to be greater than the average cost to serve each passenger. To3
make the fare attractive while keeping the operator making a profit (or at least not suffering from4
a major deficit), a certain amount of demand density is needed. When the demand density reaches5
a bottleneck, pre-booking can be enabled to further reduce the burden of the DRT operation and6
thus keep the fare more competitive.7

As nothing is perfect, there are also drawbacks of pre-booking. On top of the potential8
inconvenience caused by the need of planning a trip some time in advance, passengers are also9
likely to spend more time on-board. This is because the DRT system will exploit every possible10
opportunity to fit in extra passengers into each vehicle. This will lead to longer detours and longer11
onboard delay. Nevertheless, passengers will still be able to arrive at their destination before the12
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(a) Kelheim scenario (b) Manhattan scenario

FIGURE 5: Average number of trips served per vehicle per day under differetn setups

(a) Kelheim scenario (b) Manhattan scenario

FIGURE 6: Average cost per trips under different setups
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latest arrival time.1
One of the highlights of this study is that we include two scenarios with different geo-2

graphic characteristics in the road network and the population model. By looking at the scenarios3
side-by-side, we can acquire some extra observations. The network of the Manhattan scenario is4
denser and more regular than the Kelheim scenario (see Figure 7). Furthermore, there are also5
many one-way roads in the Manhattan scenario. If we compare the average cost per trip, we can6
realize that, given the same demand density, the trips in Kelheim are generally slightly cheaper7
to serve (except for one case), despite having a longer average direct distance. This suggests that8
the spatial-temporal distribution of the trips in Kelheim scenario is actually more favorable for9
ride-pooling than the Manhattan scenario. This could be explained by the fact that the number of10
points-of-interest is rather low in Kelheim, which is typical for a small town. This means that a11
higher share of requests can be pooled.12

It needs to be pointed out that the precondition for this statement is the same demand13
density level. Apparently, as one of the busiest districts in the world, Manhattan has a much14
higher trip density than Kelheim. Even the number of taxi trips in Manhattan is higher than the15
number of all the trips in Kelheim (i.e., including all the modes of transport). That is to say, in the16
end, Manhattan still has a greater potential for DRT systems, because of its considerably higher17
potential demand density. But in order to realize that potential, the DRT system should also be18
operated at an adequately large scale. Therefore, for small or medium size operators, who possess19
relatively small fleets and can only serve a limited number of trips per day, the more favorable20
spatio-temporal distribution of demands, in terms of ride-pooling, in rural regions like Kelheim21
may not be a trivial matter.22

(a) Kelheim Scenario (b) Manhattan scenario

FIGURE 7: Side-by-side view of the road networks of the two different scenarios
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CONCLUSION AND OUTLOOK1
The first and the most important conclusion based on our experiments and analysis is that the2
benefits of pre-booking can be realized in both investigated scenarios. With an adequately high3
demand density, incorporating pre-booking into the DRT system will effectively reduce the total4
costs to maintain and operate the system. The savings are on a similar level as suggested by a5
previous study on the special case of school transport (14). In addition to the cost savings, pre-6
booking also has a positive impact on the system and its externalities. The travel distance of the7
whole fleet can be reduced by more than 25%. This also applies to the cases where demand density8
is low. Such reduction will not only relieve part of the burden on the road network, but also reduce9
the energy consumption.10

A side outcome from the study is that the demand density also plays an important role in11
the efficiency of the DRT system. In order to make the DRT system more efficient than private cars,12
in terms of total driving distance, a certain demand density needs to be reached. When the demand13
density is too low, then the DRT system may produce a greater overall mileage than private cars.14
If this happens, pre-booking can be used to mitigate the negative impact.15

Another interesting remark based on the comparison between the Kelheim scenario and the16
Manhattan scenario is that rural scenarios may be even more lucrative for small or medium size17
DRT operators. This is because, given the same demand density, the average cost to serve a trip in18
the Kelheim scenario is actually cheaper than that in the Manhattan scenario. Note that this is not19
because of the different cost parameters, as we use the same cost calculation model for both cases.20
Therefore, when a DRT system can only serve a limited number of trips, which corresponds to a21
limited demand density, then the popular Manhattan scenario may not be the best choice. On the22
contrary, it may be easier to make profits in small towns like Kelheim. For transport planners, the23
same argument may also apply. When a DRT system of certain size is considered to be introduced24
to service, the rural area may be a better choice than the city center, as long as there are sufficient25
demands.26

One interesting direction for future investigation is the optimization of shifts of drivers in27
the DRT system. Currently, we assume that a driver needs to be in the vehicle during the whole28
day. This leads to very high personnel costs per day, which contribute to around 80% of the total29
daily costs. This value is actually in line with the actual situation in taxi operation, where the salary30
of the driver contributes to a very large part of the total costs (31). In the results of this study (i.e.,31
in Table 3 and 5), we can see that the average driving time of a vehicle is less than 50% of the32
total service hours. This means, during the non-peak hours, parts of the fleet may temporarily exit33
the service, which will reduce the personnel costs. Alternatively, vehicles could also be used to34
transport goods like parcels during off-peak hours, as suggested by (32).35

Another future research direction is to include autonomous vehicles into the analysis. The36
main goal of the KelRide project is to complement the conventional KEXI service with autonomous37
vehicles, which can provide a weatherproof and reliable transport service. The autonomous seg-38
ment operates in parallel to the conventional service, but has a different service area and pricing39
scheme. Currently, the autonomous vehicles provide free DRT service within a small service area40
(in the old town and its surrounding area). Speed limits of 20 km/h are currently imposed to assure41
the safety. There are plans to extend the service area and to increase the speed limit (24). Includ-42
ing the operation of autonomous vehicles under different setups, such as various service areas and43
different speed limits, into the analysis is an interesting future research topic.44
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