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Explicit modeling of antibody levels
for infectious disease simulations
in the context of SARS-CoV-2

Sebastian A. Müller,1,3,* Sydney Paltra,1 Jakob Rehmann,1 Kai Nagel,1 and Tim O.F. Conrad2

SUMMARY

Measurable levels of immunoglobulin G antibodies develop after infections with and vaccinations against
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). These antibody levels are dynamic: due
to waning, antibody levels will drop over time. During the COVID-19 pandemic, multiple models predict-
ing infection dynamics were used by policymakers to support the planning of public health policies. Explic-
itly integrating antibody andwaning effects into themodels is crucial for reliable calculations of individual
infection risk. However, only few approaches have been suggested that explicitly treat these effects. This
paper presents a methodology that explicitly models antibody levels and the resulting protection against
infection for individuals within an agent-based model. The model was developed in response to the
complexity of different immunization sequences and types and is based on neutralization titer studies.
This approach allows complex population studies with explicit antibody and waning effects. We demon-
strate the usefulness of our model in two use cases.

INTRODUCTION

Measurable immunoglobulin G (IgG) antibodies to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigens develop after

most infections with and vaccinations against SARS-CoV-2.1 Although the extent of immunity associated with different antibody titers and

other immune responses is not yet fully understood, it is highly likely that an individual’s antibody level provides some information about their

specific risk and severity of a future infection.2,3 However, SARS-CoV-2 IgG antibody levels decrease over time if no further immunization event

occurs.4 This waning process has been confirmed in multiple studies, showing similar effects regardless whether the immunization happened

through vaccination or infection.5,6 It has been consistently shown that the total antibody level starts declining about six weeks after the im-

munization event and potentially reduces bymore than 50%over 10 weeks.7–9 Hence, waning is important and should be considered explicitly

when modeling the antibody level.

During the COVID-19 pandemic, multiple models for projecting and predicting the spread of infections have been developed. In many

countries, researchers and policymakers have been using these models to simulate and implement public health policies. From a modeling

perspective, explicitly integrating antibody and waning effects into the simulation framework is crucial to allow reliable calculations of the

individual risk of infection and severeness estimation. So far, only very few approaches have been suggested that explicitly treat these effects

(see Section Antibody Models for Epidemiological Predictive Modelling of COVID-19: A Literature Search).

In this paper, we describe how tomodel antibody levels explicitly on an individual level, such that the population-wide statistics are close to

reality. This approach can be integrated into general frameworks, allowing complex population studies with explicit antibody and waning

effects. We demonstrate the usefulness of our model in two use cases: First, we show how to model a population, based on available

data, which allows the derivation of time-dependent immunization statistics of the individuals. Second, we describe how the antibody model

can be used to calculate protection levels (against infection) from virus variants for the entire population, specific sub-groups or on the indi-

vidual level.

The contributions of this paper are 3-fold.

1. We briefly review the current state-of-the-art literature concerning approaches for modeling individual antibody levels in epidemiolog-

ical predictive models of COVID-19 (see Sec. Antibody Models for Epidemiological Predictive Modelling of COVID-19: A Literature

Search).
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2. Wepresent an approach that uses antibody levels tomodel effects such aswaning or differentiated protection against different variants

based on different individual immunization sequences. This is based on available data, such as vaccination and infection statistics or

neutralization titers. The use of neutralization titers allows simulations to be performed before vaccine effectiveness studies are avail-

able. This is very useful when new virus variants emerge and therefore one of the major advantages of the approach presented here.

3. We show how information about the antibody level from our model can be translated into an individual’s specific protection levels

against different SARS-CoV-2 virus variants (wild-type, Delta, Omicron BA.1, Omicron BA.2, etc.).

RESULTS

Model overview

Wepropose a generalized antibodymodel. We assume generalized antibody levels,Nab;v , against all virus variants v of interest. These gener-

alized antibody levels are initially zero. The first immunization event, be this a vaccination or an infection, sets all Nab;v to initial levels, which

need to be calibrated. From then on, all levels follow an exponential decay, until another immunization event pushes them up again (the prin-

ciple is shown in Figure 1).

So far, this follows pre-existing models in the literature. The novelty is that we plug this generalized antibody model into a dose-response

model for agent-based infection dynamics. Mathematically, the dose-response model uses an infection probability of

pinf ;v = 1 � exp ð�Qv $dvÞ;
where dv is the viral dose of the virus variant v, and Qv is a calibration parameter, which depends on the transmissibility of the virus variant

under consideration. In order to calculate the reduced infection probability of immunized persons, we integrate generalized antibody levels in

the model as follows:

pimmunized
inf ;v = 1 � exp

 
� Qv $

dv

1+Nb
v

!
: (Equation 1)

Clearly, for Nv = 0 the model returns to its previous form, and Nv = 1 has the same effect as dividing the dose by 2.

Calibration

Our model uses data from studies regarding vaccine effectiveness, VE, as input (see also Figure 2). These studies compare persons with a

certain immunization history, i.e., vaccination(s) or infection(s), with persons without that; VE is typically given as a function of time after

the last of these immunization events. At the beginning of a pandemic, such studies are comparatively straightforward to conduct since

only one virus variant is in circulation, and many immunologically naive persons are available for comparison. Later in the pandemic, it be-

comes harder to study VE as people have increasingly divergent immunization histories, which leads to inhomogeneous immunity profiles;

additionally, there are fewer immunologically naive persons to compare with. Our model interpolates the results of vaccination effectiveness

studies, which allows us to generalize these to arbitrary sequences of immunization events. Additionally, it is possible to extend immunity

profiles, i.e., a synthetic person’s Nv values, to a new virus variant by using the lab-based neutralization titer measurements. Specifically, if

a neutralization titer of a new virus variant w is reduced by a factor of a against an older virus variant v, all new Nw values are obtained as

Nw = a$Nv :

Use cases

In the following, we show two use cases of our model (details about STARMethods and data can be found in Sec. Method details). All results

refer to the city of Cologne in Germany.

1. We show that the model is able to calculate population-wide immunization statistics at a given time, even for large populations, i.e.,

people living in a large city. This is the basis for more complex use cases, such as the following one. Our model is validated by the fact

that its outputs closely match the observed data.

2. We show how the model can be used to gain insight into individual population groups and how they are protected against different

virus strains. The model can be used as a data source to develop strategies, such as vaccination campaigns, and can compensate for

missing data.

Use case 1: Population-wide immunization statistics

The model presented in this paper can be implemented as an extension of our agent-based model (ABM).10 In this way, we can calculate

infection dynamics that are also (but not only) dependent on immune protection. We show in the following section how the model can be

used to calculate the population-wide immunity at a given point in time. This allows us to evaluate the model in a real-world scenario by
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comparing it to available data for time periods in which data are available.Moreover, since the strategies of policymakers often dependon the

existing immunity in the population, this is a relevant parameter.

In Table 1, we show how our model result compares to observed data.11 The observed data contain information on the percentage of study

participants who tested positive for antibodies against the S antigen and for antibodies against the N antigen. Antibodies against the N an-

tigen indicate that the participant had an infection in the past. Antibodies against the S antigen indicate that the participant has been vacci-

nated or infected in thepast. Therefore, we compare the twoquantities with thepercentage of thepopulation in themodel that has had at least

one infection and at least one infection or vaccination, respectively. The observed data stem frommeasurements across Germany in the period

from June 2022 until September 2022; themodel data refer to Cologne and July 2022. As the observed data are available in this way, the com-

parison is made for different age groups. The age group < 18 is not shown because we do not have the observational data to compare it to.

When comparing the observed data in Table 1 to the model results, one finds the following. (1) The proportion of participants testing pos-

itive for antibodies against the S antigen fits very well with themodel results. According to the data, in the adult population, the proportion of

those testing positive is 96%; in the model, approximately 97% had at least one infection or vaccination. (2) The proportion of those with at

least one infection in the model fits the data less well, with a value of 44% in the data vs. 52% in the model. The deviations at this point could

presumably be explained by the fact that the Cologne model is being compared here with data from all of Germany or that the proportion of

undetected infections in the model is somewhat too high. The model is compared to reported case numbers in reality, and in order to model

the population-wide immunity correctly, it thus needs to make assumptions about under-reporting, i.e., infections that occurred in reality but

were not reported. In addition, the study that we compared our results to could be associated with some inaccuracies; e.g., because themea-

surements have a detection limit, fewer infections are found than have actually occurred. (3) In terms of the proportion with at least one infec-

tion, both the model and the data show that this proportion decreases with increasing age. However, the spread in the data between the

different age groups is greater in reality than in themodel. It is worth noting that ourmodel does not currently account for the age distribution

within households, which could contribute to the discrepancy. Additionally, themobile phone data we utilized to simulate behavioral changes

throughout the pandemic are not age dependent, potentially overlooking the higher cautionary behavior exhibited by older individuals in

reality. This absence of age-dependent behavioral patterns might explain the observed deviation in our model’s representation.

In addition to the data shown in Table 1, there are further surveys12,13 that attempted to determine what proportion of the population has

had at least one infection. We only found data from summer 2022, but the available studies show results similar to our model: by then, about

35%–50%of theGermanpopulation had been infectedwith COVID-19 at least once. Since the proportion of vaccinated individuals is higher in

the studies than that in the general population, this value must be interpreted as a lower limit and can only be used as a rough guide. For this

reason, and because the study results vary somewhat, we believe our model results are acceptable.

The data shown in Table 1 allow a comparison to the model within the different age groups. In order to be able to compare the devel-

opment over time, we use a publication from the RKI (Robert Koch-Institut), which has compiled various studies on seroprevalence in Ger-

many. The nationwide results are shown in Figure 3 (red) and are compared with our model (blue). The model points show the proportion

of the population with at least one infection or vaccination.

In general, it becomes clear that the model and the data match quite well here. At the beginning of 2021, there is a low seroprevalence in

the population in both cases, which then increases significantly, especially in summer and fall 2021, and finally reaches values above 90%.

Use case 2: Variant-specific protection of sub-groups

In general, we assume in our calculations that there is no immune protection at the beginning of the pandemic and that each infection or

vaccination increases protection, where protection is defined in the same way as vaccine effectiveness, i.e., a reduced probability to become

infected compared with immunologically naive persons. The exact methodology is explained in Sec. Method details. In the following, we de-

pict how the population is protected against infection from different virus variants according to the model presented in this paper. These are

simulation results that are difficult to validate against real data because the real-world data are not available with this level of accuracy. The

results must therefore be interpretedwith some caution but offer considerable added value precisely because they cannot be collected in any

other way. However, the results from the first use case show that where there are data to compare to, the model fits the data well when it

comes to general immunity in the population.

Figure 4 shows the population-wide protection against infection over time averaged over all age groups. The gray area shows that there is

a large spread in immune responses; some individuals are subsequently very well protected, while others have almost no protection. This can

Table 1. Comparison of population-wide immunity according to observed data from11 (1st and 3rd row) and our model (2nd and 4th row)

all 18–29 30–34 35–39 40–49 50–59 60–64 65–79 >79

S antigen11 96% 96% 94% 94% 94% 95% 95% 97% 99%

>1 vaccination/infection (model) 97% 96% 96% 96% 96% 96% 98% 98% 98%

N antigen11 44% 59% 54% 52% 50% 42% 37% 35% 28%

>1 infection (model) 52% 55% 53% 52% 52% 51% 50% 50% 50%

The observed data refer to Germany and the period from June to September 2022; the model refers to Cologne and July 2022.
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partially be explained by the fact that some individuals are unvaccinated (blue dots), while others are vaccinated (red dots) or boostered (more

than two vaccinations, green dots). The model results clearly show that vaccinated individuals are better protected than unvaccinated indi-

viduals, and missing vaccinations are not compensated for by infections. Thus, unvaccinated individuals do not achieve the same protection

through infections as vaccinated individuals.

We calculate the protection for the different variants (left to right). Individuals do not have protection against any variants at the begin-

ning of the pandemic and do not acquire significant immunity throughout 2020. This is because only a small fraction of the population was

infected in 2020 and vaccinations were not yet available. Relevant immune protection is achieved by mid-2021 because vaccinations

became available for the entire adult population. Beginning in July 2021, a significant decline in immune protection through waning is

clearly visible. In winter 2021/2022, we see another protection increase when a third round of vaccinations (boosters) was administered

to large segments of the population. The significant increase in immunity in the group of vaccinated persons (red dots) at the beginning

of 2022 can be explained on the one hand by infections and on the other hand by the statistical effect that the group becomes smaller and

smaller due to booster vaccinations. Due to the vaccination interval between the first vaccination and the booster vaccination, the propor-

tion of persons in the group of vaccinated persons, for whom the vaccination took place a long time ago, is reduced more and more in the

course of the booster campaign.

In addition, the different facets of Figure 4 show the impact of immune escape variants: in general, protection against infection with

Alpha is significantly higher than that against Delta, and protection against Delta is significantly higher than that against either Omicron

variant.

Figure 5 shows how protection varies across age groups. It is clear that the mean protection between the age groups differs significantly.

On average, children acquired less protection than adults, which can be explained by low vaccination rates in these age groups. Evidently,

according to the model, the lower vaccination rates are not compensated for by infections. According to the officially reported numbers, the

group of children under 5 years of age is almost entirely unvaccinated, which results in a low level of immune protection. It also becomes

Figure 2. Calibration results. Dots were taken from the literature,15,16,20–23 lines are the fitted curves

On day 210 the agent receive a booster dose, which increases their level of protection.

Figure 1. Exemplary immunization history

The agent gets infected with the wild type on day 50, receives themRNA vaccine on day 200, and gets infected with theDelta variant on day 600. Left: Neutralizing

antibody levels, Right: Resulting protection against infection (Protection is computed as follows: 1 � immFac = VE).

ll
OPEN ACCESS

4 iScience 26, 107554, September 15, 2023

iScience
Article



apparent that the different age groups were vaccinated at different times during the vaccination campaign. The elderly over 60 were vacci-

nated very early, so immune protection was also built up early. However, due to the early vaccination, there is already a significant decline in

vaccination protection in the summer of 2021. In the younger adults, a similar but less pronounced effect is seen; the effect is barely visible for

individuals under 18. Because vaccinations were no longer administered strictly by age during the winter 2021/2022 booster campaign, it can

be speculated that younger individuals had a shorter interval between 2nd and 3rd vaccination than older individuals.

The simulation results show that protection varies significantly depending on the age group, the variant, the time point, and the number of

administered vaccinations. In particular, there is little protection in young children; hence, according to our model, potential vaccines for this

age group could have a significant effect. In addition, it is clear that a vaccine adapted to the new variants would be helpful for all ages since

the mean protection in July of 2022 in all age groups is only about 50% or less.

DISCUSSION

This study describes a methodology that explicitly models an individual’s antibody levels and the resulting immunity to infection, using an

ABM as an example framework. The incorporation of this strategy into other frameworks can facilitate the execution of complex population

studies taking into account the dynamics of antibodies and their waning effects. During infectious disease outbreaks, such as the COVID-19

pandemic, the formulation of effective public health policies and interventions requires an accurate estimation of population protection and

individual infection risk.

In the described use cases we emphasize the significance of incorporating antibody and waning effects into models that predict infection

dynamics. If this is taken into account, a more accurate estimation of the individual risk of infection and population protection can be reached.

The use cases also demonstrate the ability to infer immune protection for both individuals and populations based on variables including time,

age, vaccination status, and virus variant. As a result, an enhanced understanding of immunity dynamics among disparate subpopulations can

provide guidance for targeted vaccination initiatives, resource allocation, and the development ofmore effective public health strategies.Our

model’s adaptability to other infectious diseases presents an opportunity to improve responses to future pandemics and outbreaks and in-

creases its applicability and potential influence.

Figure 3. Comparison of seroprevalence in the model (blue) and observed data14 (red) over time

The observed data refer to all of Germany, the model to Cologne.

Figure 4. Protection against infection according to the model for different variants

The color coding is as follows: blue: unvaccinated, red: vaccinated, green: boostered, black: mean protection (whole population), gray area: 10th to 90th

percentile. The red dots (vaccinated) do not include boostered individuals, meaning that every person is part of only one group. Reading example: for the

Delta variant (2nd plot) it becomes apparent that unvaccinated (blue) have a significantly lower protection that vaccinated (red) or boostered (green) by July 2022.
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Nonetheless, our model has limitations and inherent assumptions: except for the initial immunization administered to an individual, in

most cases no distinction is made between the effects of vaccinations and infections (see Sec. Method details for details). Furthermore, it

is assumed that the half-life of antibodies remains the same regardless of whether they originated from infections or vaccinations. Further,

we assume a correlation between antibody levels and protection against infection. This is a key aspect of many epidemiological models,

including the one described in this study. This assumption is based on the understanding that the presence of specific antibodies, such as

IgG antibodies, can help neutralize the virus, thereby reducing the risk of infection or the severity of the disease. For SARS-CoV-2, evidence

from various studies has shown this kind of positive relationship between antibody levels and protection against infection.5,15,16 Research

indicates that individuals with higher levels of neutralizing antibodies are generally less likely to become infected or experience severe

COVID-19 symptoms. However, it is important to note that the relationship between antibody levels and protectionmight be non-linear. Mul-

tiple other factors, such as cellular immunity or the presence of immunological memory, might also play a significant role in determining an

individual’s level of protection.

Overall, we believe that these considerations do not limit the applicability of the presented model, as the given empirical evidence from

the presented use cases demonstrated. With the increasing availability of research on SARS-CoV-2, COVID-19, and other infectious diseases,

it will be possible to refine and expand these assumptions to further improve the precision and applicability of our model.

Figure 5. Protection against infection according to model for different variants and age groups

The color coding is as follows: blue: unvaccinated, red: vaccinated, green: boostered, black: mean (whole age group).
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In the field of infectious disease epidemiology, the methodology presented in this paper offers a valuable method for modeling antibody

dynamics and protection against infection. This will help inform more effective public health policies and interventions, ultimately benefiting

global efforts to combat and manage the spread of infectious diseases.

Summary & conclusion

We have presented an approach on how tomodel the variant-specific neutralizing effect of antibodies and how to convert it into a protection

against infection. The presented use cases demonstrate that the model produces valid results that match the observed historical data in Ger-

many very well. Further, we have shown how this approach can be used within an agent-based modeling framework to allow computation of

infection dynamics. In the (current) situation of high population immunity, considering immune protection is essential for achieving realistic

simulation results.

Our model estimates that in summer 2022 there was still a significant difference in immune protection between unvaccinated and

vaccinated individuals. According to the model, the lack of vaccination was not fully compensated for by infections. This effect also be-

comes clear when looking at the age groups: according to the model, children had a significantly lower protection against infections

than adults. In addition, the model allows quantification of the protection against the immune escape variants. These results suggest

that the protection against the Omicron variants is significantly lower than that against the original (wild-type) variant. This matches

the available data.

The necessary model parameters have either been taken from the available literature or are based on calibration to available data. This

process necessarily includes modeling choices. Given the solid agreement between our model results and the available data, we are confi-

dent that sensible parameters and fitting parameter values have been identified. This is also confirmed by simulation results that have been

achieved by using the presented antibody model in conjunction with our own ABM (see, for example, Mueller et al.17 and Mueller et al.18).

These results demonstrate oncemore that theABMwith the presented antibody-model extension is able to soundly replicatemany important

parameters, such as case numbers, R values, and hospitalizations. This is a significant improvement based on the explicit antibody model for

each agent.

To the best of our knowledge—and based on our literature review—no other currently available model allows both (1) the integration of

antibody levels as a proxy for protection against infection and (2) the modeling of individual immunization histories. While a small number of

models implemented one of these, we have not encountered any that implements both. In consequence, our approach could help others to

integrate any permutation of immunization events, as well as waning, into their COVID-19 models.

Limitations of the study

The proposedmodel, as it is described in this paper, is well suited for the presented application scenarios and can also be adapted for future

use cases. However, limitations and possible improvements exist and will be briefly described in the following.

As described in detail in the STAR Methods section, our model uses a uniform factor of 15 to increase antibodies for all vaccinations

and infections, if this is not the first immunization event. That is, for this parameter, we do not distinguish between the different virus var-

iants or vaccines. In principle, that factor could be different for each virus or vaccine variant, and/or for each prior immunization sequence.

Differentiating between all these would yield many free parameters, which would be difficult or impossible to calibrate. This would go

against the purpose of the model to be used for predictive simulations during the acute phase of a pandemic. For this, certain

simplifications are necessary. The simplification here was to use the factor of 15 from data for the most typical case, which was a booster

vaccination after the initial vaccination, and then to assume that the same factor applies for all other cases. Clearly, it would be

possible during a pandemic to systematically test for other cases, for example, for a vaccination after an infection, or an infection after

a vaccination, and from that to decide whether the values need to be differentiated or not. For the COVID pandemic, we were not aware

of such studies.

Furthermore, when it comes to waning, we do not distinguish between infection and vaccination, but assume the same half-life. This is

on the one hand due to the fact that we have not found any data that assume the opposite, and it on the other hand once more avoids

that the number of model parameters increases significantly. Where possible, we have generally tried to reduce the number of model

parameters.

Adjustments to the model would be straightforward since the entire source code19 is publicly available.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

d METHOD DETAILS
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B Motivation

B Background

B Integration with a dose-response model

B Modeling the antibody level

B Calibration

B Use cases

B Antibody models for epidemiological predictive modeling of COVID-19: A literature search

A APPENDIX

A.1 Literature review

EMI: (YES, NO, N/A) Explicit Modeling of immunisation events (distinguish between infection, immunisation etc.) AND/OR of waning AND/

OR of a relation between antibodies and protection against infection. If the model description solely mentions any of the criterion above, but

provides no details, we still set EMI =N/A. If the samemodel was, under a slightly different name, part of multiple of our sources, we put down

all names separated by a ‘‘/’’.

Models, which were discovered through (a) the Covid-19 Forecast Hub, (b) the European Covid-19 Forecast Hub, (c) the European Covid-19 Scenario

Hub, or (d) a literature search

# Model EMI Source Model description

1 Covasim YES Lit. Search Agent-based model that simulates the transmission of COVID-19.

Individual may pass through the following infection stages:

susceptible, exposed, infectious, and recovered (SEIR). The associated

GitHub repository has last been committed to in January 2022, and

their paper,24 which was published in July 2021, mentions that they will

incorporate waning efficacy, but no more recent information or model

description could be found. Their additional methods preprint,25

which does not explicitly mention Covasim but is noted on their project

website, served as the basis for our antibody model and is discussed in

Sec. 4.

2 CovidSim N/A Lit. Search Agent-based model developed by MRC Center for Global Infectious

Disease Analysis hosted at Imperial College, London. Model

documentation, as part of the associated GitHub repository,26 has last

been updated in February 2021. No mentions of vaccines, waning or

antibodies.

3 CoSim N/A Lit. Search Expanded SEIR model containing 27 compartments (as of December

2021).27 COVID-19-related metrics are computed on German federal

state level. Checking both the model description on their website as

well as the FAQs for their simulator (which have last been updated in

December 2021), no information on waning or antibodies could be

acquired.

4 OpenCOVID YES Lit. Search A stochastic, discrete-time, individual-based transmission model of

infections and disease dynamics. In their paper,28 dating from

December 2021, the authors note that they did not consider waning

immunity in this study. But, in the supplemental information, they

model the probability of transmission as pðtransmissionÞ =

b$niðtÞ$41$sðtÞ$ð1 � msÞ, where n1ðtÞ˛ ½0; 1� denotes the viral load of

the infectious individual and t denotes they days following infection. 41

denotes the infectivity factor of the SARS-CoV-2 variant with which the

infectious individual is infected, sðtÞ denotes the season factor at date

t, and ms denotes the immunity of the susceptible individual. Here,

ms = 83% for recovered individuals (independent of disease severity,

risk group or age) and ms = 80% for vaccinated individuals. GitHub

repository has last been committed to in January 2022. Hence, we

could not determine whether or not they are still continuing their work

and if they have by now integrated waning immunity into their model.

(Continued on next page)
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Continued

# Model EMI Source Model description

5 KITmetriclab NO Covid-19

Forecast Hub

Models from the COVID-19 Forecast hub are ranked according to their

performance over the previous four weeks and then ensembled and

weighted iteratively to achieve a combined forecast.

6 CovidAnalytics

at MIT/MIT_

CovidAnalytics-

DELPHI

N/A Covid-19 Forecast

Hub, European

Covid-19

Forecast Hub

Expanded SEIR model. Their technical report29 was published in July

2020 and consequently does not contain vaccinations, waning, or

antibodies.

7 UMass-Amherst N/A Covid-19 Forecast Hub Model is based on the ‘‘HHS Protect daily Covid-19 hospital’ admission

data. Creating a set of simple time-series baseline models, which are

then combined into a single ensemble forecast of hospitalizations. No

documentation provided.

8 Johns Hopkins

University Applied

Physics Lab – Bucky

NO Covid-19 Forecast Hub Age-stratified SEIR model to estimate mid-term case loads and

provide additional outputs relating to the associated healthcare

burden on county level. No mention of waning immunity and

antibodies could be found.

9 MOBS Lab at

Northeastern

NO Covid-19 Forecast Hub Usage of the Global Epidemic and Mobility (GLEAM) model, an

individual-based, stochastic, and spatial epidemic model. Four week

forecast of weekly hospitalizations and deaths and US state and

national level. Projections have not been updated since April 2022, no

mention of waning or antibodies.

10 Masaryk University/

MUNI-ARIMA/MUNI-

LaggedRegARGIMA/

MUNI-Var

N/A Covid-19 Forecast Hub,

European Covid-19

Forecast Hub

Newest forecasts on their website are for late 2021/early 2022. They

claim that methods of statistical time series analysis are used, but no

further explanation is provided.

11 GT NO Covid-19 Forecast Hub Deep learning model that is data driven and learns the dependence of

hospitalization and mortality rate based on a variety of syndromic,

demographic, mobility, and clinical data. Their preprint30 from March

2021 presents their model in detail but does not mention vaccinations,

waning immunity, or antibodies.

12 COVID-19 Forecast Hub N/A Covid-19 Forecast Hub Baseline predictive model to forecast number of cases. No

documentation provided on website or associated GitHub repository.

13 HKUST NO Covid-19 Forecast Hub Deep neural networks to forecast cumulative deaths on the US state

level. Here, deaths, cases, and hospitalization data are taken into

account.

14 QJHong NO Covid-19 Forecast Hub ‘‘Encounter Density’’ (which is based on cell phone data) is used to

predict the future reproduction number and confirmed cases.

15 Predictive Science Inc N/A Covid-19 Forecast Hub Associated GitHub repository provides no documentation. Hence, no

information about the model could be acquired.

16 IDSS COVID-19

Collaboration (Isolat)

at MIT

NO Covid-19 Forecast Hub Curve-fitting model to make short-term (for the following two weeks)

predictions on number of cases and deaths in the US, on state and

federal level. Based on the assumption that the metric of interest (i.e.,

the number of deaths) can be explained by the sum of a set of Gaussian

curves.

17 Steve McConnell N/A Covid-19 Forecast Hub Forecasts deaths in the US; work is submitted to CDC to integrate into

their ensemble model. No description of model provided.

18 Robert Walraven/

RobertWalraven-ESG

NO Covid-19 Forecast Hub,

European Covid-19

Forecast Hub

Website has not been updated since 2021. According to the author, no

epidemiological parameters are used. Contrarily, he uses a skewed

Gaussian distribution to fit the available case data and a second

skewed Gaussian distribution to fit the available deaths data.

(Continued on next page)
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19 Carnegie Mellon

Delphi Group

(COVIDcast)

NO Covid-19 Forecast Hub Creation and evaluation of an ensemble forecast.

20 Predictive Science N/A Covid-19 Forecast Hub The associated GitHub repository states that this is a ‘‘R package for

modeling and forecasting direct-contact and vector-borne infectious

diseases’’. No further documentation provided.

21 UT N/A Covid-19 Forecast Hub Consortiuum, which both surveils and forecasts the infection dynamics

of COVID. In their paper from February 2022 they present their age-

and risk-structured SEIR model and note the necessity for forecasting

models to integrate dynamics of infection-acquired and vaccine-

acquired immunity. At the time of our screening, no publications nor

documentation on the website which included acquired immunities,

vaccines, or antibodies could be found.

22 LUcompUncertLab N/A Covid-19 Forecast Hub Associated GitHub repository states that they forecast infectious

disease dynamics by combining forecasts of computational models

and human judgment. No documentation provided.

23 UCSD_NEU NO Covid-19 Forecast Hub A hybrid mechanistic and deep learning model for short-term (up to

4 weeks ahead) predictions of deaths on US state level.

24 University of Virginia,

Biocomplexity COVID-19

Response Team/UVA-

Ensemble/UVA-EpiHiper

N/A Covid-19 Forecast Hub,

European Covid-19

Forecast Hub, European

Covid-19 Scenario Hub

Multi-methodmodel (integratingmultiple statistical, machine learning,

and mechanistic methods) forecasting the new confirmed cases on US

state, county, and national level. These model forecasts are combined

using Bayesian model averaging.31 In the publication from August

2021, neither antibodies nor waning are mentioned.

25 MIT-Cassandra N/A Covid-19 Forecast Hub Associated GitHub states that this is a Markov decision process

inference model to capture the dynamics of the growth rates of cases

and deaths. No documentation provided.

26 University of Central

Florida

N/A Covid-19 Forecast Hub The associatedGitHub repository contains a variety of CSV files, but no

documentation. Hence, no information on the model could be

gathered.

27 Columbia University N/A Covid-19 Forecast Hub Use a metapopulation SEIR model to forecast for the upcoming

42 days of daily new cases, infections, and hospitalized individuals on

US state, county, and national level. The model documentation, which

we scanned, dates from 2020 and hence does not mention antibodies

or waning. No more recent documentation was found.

28 Hussain Lab at Texas

Tech University

N/A Covid-19 Forecast Hub Associated GitHub repository states that this is an SIR-based

compartmental model, which takes into account the possible immunity

loss for recovered individuals. No documentation provided and linked

preprint is from July 2020. Hence, this does not contain any valuable

information for this study.

29 CU Boulder NO Covid-19 Forecast Hub Associated GitHub repository states that they predict COVID-19 cases

at the county level in the US using a stacked long short-term memory

model (LSTM). In their paper,32 neither antibody levels or waning are

mentioned as a necessity for their model. Same group as in

‘CUB_PopCouncil’ below.

30 ’Swiss Data Science

Center/University of

Geneva’/SDSC_ISG-

TrendModel

NO Covid-19 Forecast Hub,

European forecast hub

Short-term (1 week ahead) predictions of cases and deaths; very little

documentation provided on website. In their preprint, they clarify that

they implemented a piecewise trend estimation method based on the

robust Seasonal Trend decomposition procedure based on LOESS

(STL).

(Continued on next page)
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31 Karlen Working Group N/A Covid-19 Forecast Hub,

European Covid-19

Forecast Hub

Usage of discrete-time difference equations with long periods of

constant transmission rate. Their model description from July 2020

does not mention waning or immunity, but they provide some

presentation slides, which mention the integration of waning into their

model. No further documentation is provided and antibodies are not

mentioned.

32 University of Southern

California/USC-

SlkJalpha/USC-SlkJalpha_

update

N/A Covid-19 Forecast Hub,

European Covid-19

Forecast Hub, European

Covid-19 Scenario Hub’

Usage of their own SIkJa model to forecast cumulative cases on US

state, county, and national level as well as internationally. Their

preprint33 dating from July 2020 does not mention antibodies or

waning, but their website notes that they are accounting for vaccines

and all current variants. Here, no further documentation could be

found.

33 CUB_PopCouncil NO Covid-19 Forecast Hub Associated GitHub repository provides very little documentation.

According to the repository, this is code for predicting COVID-19

hospitalizations at the state level in the US. Hereby, a stacked long

short-term memory model (LSTM) is used.

34 John Hopkins ID Dynamics

COVID-19 Working Group

N/A Covid-19 Forecast Hub SEIR model incorporating the uncertainty in the effectiveness of NPIs

to project different possible epidemic trajectories and healthcare

impacts. Associated GitHub repository has last been updated in

September 2020, and paper34 dates from April 2021. Paper does not

yet consider vaccines and mentions neither waning nor antibodies. No

more recent documentation could be acquired.

35 BPagano N/A Covid-19 Forecast Hub Death-based SIR model to project cumulative confirmed cases,

confirmed cases per day, cumulative deaths, deaths per day, and some

additional metrics for a variety of individual countries and on US state

and county level. Neither antibodies nor waning immunity are

mentioned in the model description.

36 Institute for Health Metric

and Evaluation (IHME)

YES Covid-19 Forecast Hub (0) Blog post dating from December 2021,35 which describes their

model update in detail. Their new model is a system of integro-

differential equations. (1) Individuals are placed in different

compartments based on variant by which they were more recently

infected and round of vaccination they most recently got / One

compartment for each combination of vaccinations and infections (at

the time of the blog post they are considering 24 compartments); (2)

Time since last vaccination and/or infection is tracked; (3) Protection

from infection and vaccine interact multiplicatively. In other words, if ε

is the protection (against a variant) acquired from vaccination and 4 is

the protection acquired from infection, then a person’s risk of infection

is ð1 � εÞð1 �4Þ times the risk of a naive individual. Hence, an

individual’s risk of infection depends on the variant and time of their

last infection, the brand and time of their last vaccination, and the

variant they’re currently confronted with. They estimate the average

protection in a particular susceptible compartment to a specific

variant. This is then integrated into their integro-differential equations

which describe the transitions between compartments. In the

appendix of their recent publication36 it is noted that to estimate

waning protection against infection following vaccination, they used

Bayesian meta-regression with a monotonically decreasing spline on

time since second dose. Waning curves are estimated by vaccine and a

lower bound of a 10% efficacy is introduced.

(Continued on next page)
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37 BIOCOMSC-Gompertz N/A European Covid-19

Forecast Hub

Description of their (early) empirical model can be found in their report

fromMarch 2020. Hence, no mention of partial (immunity), antibodies,

or waning. Unfortunately, large parts of the website are in Catalan, so

they were not considered in this review.

38 bisop-seirfilter NO European Covid-19

Forecast Hub

Unfortunately, their website is only available in Czech. However, in

their preprint37 from February 2021 they describe their SEIR

compartmental model. Neither immune waning nor antibodies are

mentioned.

39 bisop-seirfilterlite NO European Covid-19

Forecast Hub

Same people as for ‘bisop-seirfilter’.

40 CovidMetrics-epiBATS N/A European Covid-19

Forecast Hub

Short-term (for the following 10 days) predictions of cases for Germany

and its federal states. Apart from that, visualizations of different

metrics, no documentation provided.

41 DirkBeckmann-

Gompertz

N/A European Covid-19

Forecast Hub

Accessed the associated GitHub repository, which did not provide any

documentation. Hence, no documentation about the model could be

acquired.

42 DSMPG-bayes N/A European Covid-19

Forecast Hub

Bayesian inference and forecast of different COVID-19-related metrics

like the effective growth rate, daily new reported cases, and the total of

reported cases.

43 ECDC-hosp_model N/A European Covid-19

Forecast Hub

Ensemble model forecasts by the European COVID-19 forecast hub

predict the numbers of cases, hospital admissions, and deaths to be

reported for the upcoming two weeks for every EU country. ECDC’s

forecasts of ICU admissions are currently not displayed as the model is

undergoing adjustments. Apart from description of data sources, no

documentation could be found.

44 epiforecasts-arimareg NO European Covid-19

Forecast Hub

Estimate and forecast effective reproduction number and confirmed

cases based on case and death notifications while accounting for

reporting delays.

45 epiforecasts-caseconv NO European Covid-19

Forecast Hub

Leads to the same website as ‘epiforecasts-arimareg’.

46 epiforecasts-EpiExpert_direct NO European Covid-19

Forecast Hub

Leads to the same website as ‘epiforecasts-arimareg’.

47 epiforecasts-EpiExpert_Rt NO European Covid-19

Forecast Hub

Leads to the same website as ‘epiforecasts-arimareg’.

48 epiforecasts-EpiExpert NO European Covid-19

Forecast Hub

Leads to the same website as ‘epiforecasts-arimareg’.

49 epiforecasts-EpiNow2 NO European Covid-19

Forecast Hub

Package to estimate the effective reproduction number, growth rate,

and doubling time.

50 epiforecasts-tsensemble NO European Covid-19

Forecast Hub

Leads to the same website as ‘epiforecasts-arimareg’.

51 epiforecasts-weeklygrowth N/A European Covid-19

Forecast Hub

Leads to the personal website of SamAbott, who is also involved in the

models mentioned above. No model documentation could be

acquired.

52 epiMOX-SUIHTER N/A European Covid-19

Forecast Hub

Depicts data of the COVID-19 pandemic at the national Italian as well

as on a regional (20 Italian regions) level. Their paper38 from July 2021

mentions neither antibodies nor immune waning but rather evaluates

the ability of their dashboard to provide fast and in-depth analyses of

the past trends of the pandemic in Italy and supply predictions on its

evolution based on their compartmental model, named SUIHTER.

(Continued on next page)
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53 EuroCOVIDhub-baseline N/A European Covid-19

Forecast Hub

Forecasts and reports can be found on the European Covid-19

Forecast Hub website, but no documentation could be found.

54 EuroCOVIDhub-ensemble N/A European Covid-19

Forecast Hub

Same as above.

55 FIAS_FZJ.Epi1Ger N/A European Covid-19

Forecast Hub

Broken URL, no information could be acquired.

56 fohm-c19inbel N/A European Covid-19

Forecast Hub

Broken URL, no information could be acquired.

57 HZI-AgeExtendedSEIR N/A European Covid-19

Forecast Hub

They are currently conducting a multi-local and serial cross-sectional

prevalence study on antibodies in Germany, but no model

(description) on infection dynamics could be found on their website.

58 ICM-agentModel N/A European Covid-19

Forecast Hub,

European Covid-19

Scenario Hub

Predict confirmed cases, occupied hospital beds, and critical cases for

the following two months in Poland. Agent-based model, but hardly

any model documentation provided on website. Their preprint39 from

September 2021 does mention neither antibodies nor waning,

describes their agent-based model (not mentioning the influence of

multiple vaccine jabs/infections), and focuses on finding an optimal

lockdown strategy for Poland. In said preprint, they define the

probability of infection as pinfection = 1 � expð� aIÞ. Here, a is the

transmission coefficient and I is the total infectivity defined via I =P
cwc Ic , where the sum is over the different infection contexts

(household, workplace, preschool, school, university, large university,

street, and travel), wc is the time-dependent contact rate of context c,

and Ic is the time-dependent context infectivity depending on the

number of (a) symptomatic and all agents at context c, the fraction of

symptomatic agents who do not self-isolate, and a curbing parameter

for the infectivity of the asymptomatic agents. Consequently, no

protection acquired from infection/vaccination is included.

59 IEM-Health-CovidProject N/A European Covid-19

Forecast Hub

AI-based disease model to predict the number of new cases during the

following seven days in the USA. Dashboard has not been updated

since April 2021, no model description available.

60 ILM-EKF N/A European Covid-19

Forecast Hub

Leads to a GitHub user page on which no documentation is provided.

Unable to acquire information.

61 Imperial-DeCa NO European Covid-19

Forecast Hub

Short-term forecasts of COVID-19 deaths in multiple countries.

Produce ensemble forecasts from the output of three different models.

62 Imperial-Rtl0 NO European Covid-19

Forecast Hub

Leads to same website as ‘Imperial-DeCa’.

63 Imperial-sbkp NO European Covid-19

Forecast Hub

Leads to same website as ‘Imperial-DeCa’.

64 itwm-dSEIR N/A European Covid-19

Forecast Hub

Link provided on the European COVID-19 Forecast Hub leads to the

general website of Fraunhofer-Institut für Techno- und

Wirtschaftsmathematik ITWM. There, no information on any sort of

COVID-19 related model could be acquired.

65 ITWW-county_repro N/A European Covid-19

Forecast Hub

Leads to same GitHub user page as ‘ILM-EKF’.

66 JBUD-HMXK N/A European Covid-19

Forecast Hub,

European Covid-19

Scenario Hub

Projections for various scenarios and countries. ‘‘News’’ subpage has

not been updated since December 2021, no documentation provided.

Associated GitHub repository has last been updated in April 2022 but

does not provide documentation either.
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67 KITmetricslab-bivar_branching N/A European Covid-19

Forecast Hub

GitHub repository simply states that this is a simple model of a

branching process for delta and non-delta cases in Germany. No

additional documentation available.

68 LANL-GrowthRate NO European Covid-19

Forecast Hub

Their model description (dating from October 2020) introduces their

model COFFEE, which is a probabilistic model that forecasts daily

reported cases and deaths. Additionally, the top of their website states

that they made their last real-time forecast in September 2021. Hence,

we assume that they discontinued their work. No mention of

antibodies or waning.

69 LeipzigIMISE-SECIR N/A European Covid-19

Forecast Hub

Forward to a GitHub repo which does not provide any documentation

and has last been committed to in April 21.

70 MIMUW-StochSEIR N/A European Covid-19

Forecast Hub

Unfortunately, their website is only available in Polish and has last been

updated in July 2021. Hence, no information could be acquired.

71 MOCOS-agent1 N/A European Covid-19

Forecast Hub,

European Covid-19

Scenario Hub

Short-term forecasts (up to one month) of cases and deaths in Poland.

Both their reports and linked papers are from 2020. No model

documentation in English could be found.

72 MUNI_DMS_SEIAR N/A European Covid-19

Forecast Hub

Unfortunately, their website is only available in Czech. Hence, no

information could be acquired.

73 PL_GRedlarski-

DistrictsSum

N/A European Covid-19

Forecast Hub

Unfortunately, their website is only available in Polish. No information

could be acquired.

74 prolix-euclidean NO European Covid-19

Forecast Hub

Unfortunately, the website is mostly in French and has last been

updated in May 2022. Their preprint,40 dating from April 2021, states

that they forecast the number of ICU patients in France. No mention of

waning or antibodies.

75 Statgroup19-richards NO European Covid-19

Forecast Hub

Unfortunately, website is only available in Italian. Associated blog is in

English but has not been updated since September 2021. Their

paper41 was published in July 2021 and introduces their parametric

regression model, which is motivated by incidence indicators such as

the number of hospitalized, deceased, recovered, and isolated cases.

No mention of (partial) immunity, waning, or antibodies.

76 Statgroup19-

spatialrichards

NO European Covid-19

Forecast Hub

Leads to same website as Statgroup19-richards above.

77 UB-BSLCoV N/A European Covid-19

Forecast Hub

Broken URL, no information could be acquired.

78 UC3M-EpiGraph N/A European Covid-19

Forecast Hub,

European Covid-19

Scenario Hub

Agent-basedmodel, whose infection model is a SEIR++model with 17

different compartments. A different R value is associated with every

compartment. The compartments for the different stages of infection

differentiate between vaccinated and unvaccinated individuals.

Additionally, their vaccination model considers a decrease in

protection as well as an age-dependent efficacy and the risk of vaccine

failure. How these properties are incorporated is not described.

79 LZF-SEIRC19SI N/A European Covid-19

Forecast Hub

Unfortunately, their website is solely available in Slovenian. Hence, no

information could be acquired.

80 UMass-MechBayes N/A European Covid-19

Forecast Hub

GitHub repository has not been updated since July 2021. Apart from

the repository, there is no documentation available.

81 UMass-SemiMech N/A European Covid-19

Forecast Hub

Same repository as for ‘UMass-MechBayes’ is provided.
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82 UNED-PreCoV2 N/A European Covid-19

Forecast Hub

Unfortunately, the website is only available in Spanish. They note that

in late March 2022 a new strategy for the surveillance and control of

COVID-19 as implemented. As a consequence, the daily data that

feeds into their model are no longer available and they discontinued

their work. Due to the language barrier, no model documentation

could be acquired.

83 UNIPV-BayesINGARCHX NO European Covid-19

Forecast Hub

Developed the ‘‘COVID Atlas’’, which provides visual analytics on

several aspects of the pandemic. Here, health (i.e., data regarding the

pandemic progression), socio-economic, and socio-political data are

integrated. The atlas lets the user visualize data on multiple layers but

does not contain its own disease digression model.

84 UpgUmibUsi-MultiBayes NO European Covid-19

Forecast Hub

GitHub repository has not been updated since January 2021. In their

paper42 from August 2021, their Bayesian multinomial and Dirichlet-

multinomial autoregressive models are proposed. Here, time series of

numbers of patients in exclusive categories (for example, hospitalized

in regular wards, in ICU units, deceased) are estimated. No mention of

(partial) immunity, antibodies, or waning.

85 USyd-OneModelMan N/A European Covid-19

Forecast Hub

GitHub repository has last been committed to in April 21. Use global

linear models to reproduce forecasts on COVID-19 daily cases. No

documentation provided.

86 ECDC-CM_ONE N/A European Covid-19

Scenario Hub

From the GitHub repository of the Scenario Hub we learned that they

integrate that protection against infection wanes based on decaying

antibody titers. No detailed model description or publications

associated with this model were found. Hence, we are unable to

discuss the antibody integration in this model

87 MODUS_Covid-episim YES European Covid-19

Scenario Hub

Our own project.

88 RIVM-vacamole NO European Covid-19

Scenario Hub

GitHub repository states that this deterministic, age-structured, and

extended (severe disease outcomes, vaccinations) SEIR model was

developed to investigate different vaccination strategies. No mention

of antibodies or waning in documentation.

89 SIMID-SCM N/A European Covid-19

Scenario Hub

Their paper from June 202143 introduces their stochastic age-

structured discrete time compartmental model to describe the

transmission of COVID-19 in Belgium. In their technical report from

September 202244 the SIMID consortium notes a constant waning rate

of 1/240days based on the assumptions of the European Scenario Hub.

No additional information is provided; antibodies are not mentioned.

90 TUWien-

AustrianCoVABM

NO European Covid-19

Scenario Hub

Their paper from May 202145 introduces their stochastic agent-based

model, which evaluates contact tracing policies in 2020. Hence,

(partial) immunity is of no concern and neither waning nor antibodies

are mentioned.

(a) and (b) were accessed on 07/21/22, while (c) was accessed on 08/31/22.
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KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for source code and data should be directed to and will be fulfilled by the lead contact, Sebastian Müller

(mueller@vsp.tu-berlin.de).

Materials availability

This study did not generate new materials.

Data and code availability

d The colognemobility data have been deposited at Zenodo and are publicly available as of the date of publication (see key resources table).

d All original code is deposited in a Github repository and is publicly available as of the date of publication (see key resources table).

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Our study does not use experimental models typical in the life sciences.

METHOD DETAILS

In the following, we describe how our model computes antibody levels and how it calculates the ensuing protection against infection with

SARS-CoV-2. We explain how the model parameters were chosen using both available data and our own calibration, which was necessary

to fill data gaps.

Themodel is composed of two layers: 1) Modelling the antibody level, based on real-worldmeasurements of antibody titers. 2) Translation

of the antibody level into protection against infection, as this is the relevant parameter to calculate the infection probability.

The model is designed as an extension to our agent-based model presented in Mueller et al.10 The protection is integrated as an addi-

tional parameter into the infectionmodel, described on page 5 of that paper. The principle is simple: the higher the antibody level, the higher

the protection. And the higher the protection, the lower the probability of infection, given contact with an infectious agent. As described in

Mueller et al.,10 our dose responsemodel is calibrated against both hospital numbers and case numbers. Amongother things, disease import

(e.g., from abroad), activity participation based on mobile phone data, and mask wearing are taken into account.

Motivation

Our approach has two motivations. First, around fall 2021 with the emergence of the Delta variant, it became clear that modelling immunity

with look-up tables would eventually become combinatorial impossible. Already at that time, four immunization events (initial vaccination,

booster, two infections, in arbitrary sequence) were not unheard of, and together with four possible types of immunization (wildtype/Alpha

variant, Delta variant,mRNA vaccination, vector vaccination) this resulted in 44 = 256 different immunization sequences, and that number kept

growing combinatorial with each additional immunization event, virus strain, or vaccine type. It became impossible to derive immunities for all

these different sequences, in particular since they also needed to be further differentiated by the timings between the immunization events. In

consequence, a plausible quantitative model was needed that could be fitted against the available data, and that would extrapolate to im-

munization sequences for which we had no data.

Second,we needed themodel to work with new virus strains before vaccine effectiveness data became available for those. One of the first

things that became known about each new strain were the relative antibody titers: Blood samples were taken from individuals with a known

immunization history, and it wasmeasured howmuch these samples could be diluted until the new virus variant, comparedwith previous virus

variants, would overwhelm the diluted blood samples. Our model is able to quantitatively predict the remaining immunity against such im-

mune escape variants from such neutralization titer studies.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Mobility Data Cologne This paper https://doi.org/10.5281/zenodo.8137677

Software and algorithms

EpiSim Müller et al.10 https://github.com/matsim-org/matsim-

episim-libs
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Background

We used the models of Cohen et al.25 and Cromer et al.,46 with details for the latter in Khoury et al.,47 as starting points for the process of

integrating antibodies into our agent-based model. Both deal with the connection between neutralizing antibodies with protection against

infection. They both postulate a logistic model of type

VE =
1

1+exp ð � b$ðlogðNabÞ � logðN50ÞÞÞ
for vaccine effectiveness, whereNab is themeasured antibody level,N50 is the antibody level at which VE is 50%, and b determines the slope at

Nab = N50. Translated into relative risk, which we here call immFac, this can be rearranged to

immFac = 1 � VE =
1

1+exp ðb$ðlogðNabÞ � logðN50ÞÞÞ =
1

1+ðNab=N50Þb
=

1

1+Nb
;

where N is a strain-specific relative antibody level and is defined as N : = Nab=N50 (see Sec. Modelling the antibody level for more explana-

tion).N is unit-less andwould need to bemultipliedwithN50 to be expressed in laboratory units. Note thatN is time-dependent, as antibodies

decrease over time, and increase when an infection or vaccination occurs (see Sec. Modelling the antibody level). The value for b is chosen

through calibration (see also Sec. Calibration). The equation shows that a relative antibody level of 0 leads to an immunity factor of 1, i.e. a VE

of 0%. An antibody level of 1 leads to an immunity factor of 0.5, i.e. a VE of 50%. An antibody level above 1 corresponds to an immunity factor

below 0.5, i.e. a VE higher than 50%.

Integration with a dose-response model

Our agent-based model10 uses the following well-established dose-response model to calculate the probability of infection:48–50

pinf = 1 � exp ð�Q $dÞ;
where d is the viral dose, and Q is a calibration parameter, which depends on the transmissibility of the virus under consideration.

The open question was how to include immFac in the above dose-response infection model; since most simulations use a compartmental

approach, they do not need to resolve this issue. A possible form, pimmunized
inf = immFac$pnot� immunized

inf , would imply full protection for people

with high antibody levels, even in virus rich environments.51 This does not seem plausible, given that the virus eventually overcomes the an-

tibodies if the ratio of virus to antibodies is large enough.

As a consequence, we put immFac into the exponent:

pimmunized
inf = 1 � exp ð � Q $d $ immFacÞ = 1 � exp

�
� Q $

d

1+Nb

�
: (Equation 2)

Note that this has the consequence that in a virus-limited environment, where dose d is small, immFac becomes a risk reduction:

pimmunized
inf

pnot� immunized
inf

=
1 � exp ð � immFac$Q$dÞ

1 � exp ð�Q$dÞ z
immFac$Q$d

Q$d
= immFac : (Equation 3)

This linear approximation in a virus-limited environment follows from 1 � expð� xÞzx for xR 0 and sufficiently small.

That is, a model that was originally developed for a macroscopic situation is now used at a more microscopic level. The epidemiological

risk reduction would come out as an average over many exposures with different values of d.

Equation 2 shows how antibodies reduce the likelihood of becoming infected (reduced susceptibility). However, we also included the fact

that individuals with antibodies have reduced probability to transmit the virus (reduced infectivity). Thus, when an unvaccinated agent has

contact with a vaccinated agent, the unvaccinated agent indirectly benefits from the vaccinated agent’s antibodies because the probability

of infection is reduced. If both agents are vaccinated, the probability is further reduced. This is in accordance with findings by Eyre et al.52 In

ourmodel, the infectivity is reduced according to the sameprinciple as explained above, but to a lesser extent. The effect of the antibodies on

infectivity is 25% of the effect they have on susceptibility. Thus, if an agent has a 50% reduced probability of infection due to their antibodies,

the probability of transmission is reduced by only 12.5%.

Modeling the antibody level

In the next step, the relative antibody levels (N in Equation 2) aremodelled. For every simulatedday and agent, themodel updates the agent’s

relative antibody level with respect to each SARS-CoV-2 strain. A relative antibody level of 0 corresponds to no protection, while a relative

antibody level of 1 corresponds to 50% protection (see Sec. Background). At the beginning of the simulation, all agents are initialised with

a relative antibody level of 0. Immunization events (vaccinations and infections) increase an agent’s relative antibodies. On days on which

no immunization event occurs, the antibody levels follow an exponential decay curve,
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NðtÞ = N0$2
� t=t0:5 ; (Equation 4)

whereNðtÞ is the antibody level on day t after the most recent immunization event,N0 is the antibody level immediately after the most recent

immunization event and t0:5 is the half-life, which is calibrated as 60 days, see Sec. Calibration. The value of 60 days is on the lower end of what

can be found in the literature46,53,54).

The general principle of the model is exemplified in Figure 4. The left figure shows how the antibody level of an agent develops over time.

The spikes in relative antibodies correspond, in this illustrative example, to a SARS-CoV-2 infection, an mRNA vaccination, and an infection

with the Delta variant. On days without an immunization event, the waning becomes apparent. In addition, it becomes clear that we distin-

guish between the different virus variants. As a result, this means that agents are less protected against the immune escape variants after

vaccination. The right plot shows how we translate the antibodies into protection. See Sec. Background and Sec. Integration with a dose-

response model for details.

Initial immunization

As noted above, we assume that initially (at the beginning of the pandemic) all agents have an antibody level of 0. The first immunization event

generates a strain-dependent initial antibody level, which is shown in Table S1. The agent’s antibodies have varying neutralizing effects

against different SARS-CoV-2 strains. Thus, we model that an agent has a different relative antibody level per strain. As shown in Table S1,

an infection with Delta provides more relative antibodies against a reinfection with Delta than against an infection with an Omicron variant.

Similarly, the vaccinations were designed to protect against the wild-type and Alpha variants; thus, the vaccinations provide more relative

antibodies against these strains than against later variants.

Table S1 is based on studies that examined protection against (symptomatic) infection and on various studies that measured antibody

titers after vaccination or infection.55,56 Here, protection obtained through vaccination with the mRNA vaccines developed by Moderna

(mRNA-1273), and by BioNTech-Pfizer (BNT162b2) are summarized under ‘mRNA’, while the vector vaccines developed by AstraZeneca

(ChAdOx1-S) and Johnson& Johnson (Ad26.COV2.S) are summarized under ‘vector’. In consequence, we do not distinguish between vaccine

brands, but only between vaccine types.

The starting point for Table S1 was protection after vaccination with an mRNA vaccine against the wild-type, the Alpha, the Delta and the

Omicron BA.1 variant (marked with+ in Table S1). For these cases, studies that assess vaccine effectiveness over time are available.15,16,21–23

To match these studies, the corresponding initial antibody values in Table S1 were calibrated. In the same step, the half-life of 60 days from

Equation 4 was estimated (for the calibration process, see Sec. Calibration and for the conversion between vaccine effectiveness and neutral-

izing antibodies, see Equation 6.

In the next step, we used measurements from Roessler et al.55,56 to populate the other entries.

For example, the second row of Table S1 represents the relative antibodies versus various strains resulting from a vector vaccination.

For Alpha,55 measure a neutralizing effect of approximately 700 after mRNA vaccination and approximately 210 after vector vaccination (we

obtained these values from Figure 1 in Roessler et al; 55). We used this ratio to calculate the relative antibodies against Alpha after vector

vaccination: 29:2$210=700 = 8:76. The remaining entries in the table were filled following the same logic.

The measurements by Roessler et al.55,56 and others show that there is virtually no neutralizing effect if the initial immunization event is an

Omicron infection, so we assume a very low value (0.01) here.We do not use 0, as it is to be expected that at least a small protection is present

in the case of repeated infections.

We did not have accurate measurements for Omicron BA.2 and BA.5 at the time of the study; thus, we calibrated the immune escapes

using our agent-based model. Here, we take the values for BA.1 from Table S1 and divide them by a factor. The factor was calibrated so

that our model correctly replicates the infection dynamics, in particular the initial growth of BA.2 and BA.5, respectively.

Agent heterogeneity

To account for the fact that immune response towards vaccinations or infections varies across the population, we assign an immuneRes-

ponseMultiplier to each agent. The lowest possible immuneResponseMultiplier is 0.1, which is an attempt to adequately depict the immu-

nocompromised population; the maximum multiplier is 10.0. Table S1 presents the initial antibodies for an individual with an average

response to immunization events (immuneResponseMultiplier = 1.0); for low and high responders, the antibodies shown in the table

are multiplied by an agent’s immuneResponseMultiplier to calculate the antibodies gained in response to an immunization event. A

log-normal distribution of immuneResponseMultiplier with a m of 0.0 (corresponding to a median of 1.0) and s of 3.0 is applied to the

population.

Subsequent immunizations

If the agent is subject to an additional immunization event, their antibody levels against each strain will bemultiplied by a factor of 15, regard-

less of whether a vaccination or infection occurs.57 The maximum antibody level that an agent can have is 150 (which corresponds to a pro-

tection of nearly 100%). If the multiplication by 15 still leads to a lower protection than indicated in Table S1, then the value from Table S1 is

used insead. This means that, at minimum, the initial antibody level from Table S1 is always reached.
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Calibration

As not all necessary parameters were available in the literaturewhenwebuilt thismodel, some had to be estimated. This is also consistent with

using themodel in real timewhile the pandemic is unfolding. These estimations were based on studies on vaccine effectiveness, together with

Equations 2 and 4. The relative risk for a symptomatic infection of an immunized individual vs. a non-immunized individual given dose d is

pimmunized
symp =pnot� immunized

symp . Vaccine effectiveness is defined as one minus this relative risk:

VE = 1 � pimmunized
symp

pnot� immunized
symp

(Equation 5)

In the model of Mueller et al.,10 psymp = a$pinf (with a = 0:8), and thus

. = 1 � a$pimmunized
inf

a$pnot� immunized
inf

= 1 �
1 � exp

�
� Q$

d

1+Nb

�
1 � expð�Q$ dÞ ; (Equation 6)

that is, for the specificmodel of Mueller et al.,10 the a cancels out. The approach will, however, also work for other models where this is not the

case. VE, according to Equation 6, depends on the dose d; for example, for d/0 one obtains/1 � 1
1+Nb , while for d/N, one obtains VE/

0. That is, according to the model, immunity can be overcome by a sufficiently high dose. This is similar to the distinction between virus-rich

and virus-limited environments, where protection measures such as masks only make a difference in virus-limited environments.51 We per-

formed the calibration assuming a value of Q$d = 0:001, that is, with

VEðtÞ = 1 �
1 � exp

 
� 0:001$

1

1+NðtÞb
!

1 � exp ð� 0:001Þ : (Equation 7)

We also tested the calibration for values other than 0.001 and obtained very similar results. In the model of Mueller et al.,10 a value of 0.001

corresponds to contact with a contagious person for about 1000 sec without protection (e.g., mask) in a room of 20m2.(A typical value forQ in

the model of Mueller et al.10 is of the order of 10� 5. At the same time, without protection (e.g., masks) d = t=ðrs $aeÞ, where t is the time of

exposure in seconds, rs is room size inm2, and ae is the air exchange rate per hour. Assume rs = 20m2 and ae = 0:5=h, typical values for a two-

person office or a smallish living room, and t = 1000 sec of exposure time. These values result in Q$d = 0:001:).

Using the above equation, we performed parameter estimations for:

� t0:5 in Equation 4.

� Entries marked with + in Table S1.

� b in Equation 2.

To this end, for the wild-type/Alpha, the Delta, and the Omicron BA.1 variants, Equation 7 was fitted to data points taken from

studies15,16,21–23 by minimizing the mean squared error. For this, we used R (version 4.1.1) and the optim function from the stats package.58

Optim can be used for general purpose optimization as it is based on Nelder–Mead, quasi-Newton and conjugate-gradient algorithms. The

results can be seen in Figure 5, where the dots are values taken from the studies mentioned above, and the lines show the vaccine effective-

ness VEðtÞ in our model when using the calibrated values. The increased vaccine protection after 210 days is related to booster vaccinations.

Use cases

Use case 1

Use case 1 shows howourmodel can be used to calculate population-wide immunization statistics for a synthetic population. For this, we used

the agent-basedmodel described inMueller et al.10 in combination with the antibodymodel introduced in this paper.We start the simulation

in February 2020. At the beginning of the simulation, the population does not have any antibodies. This means that the number of immuni-

zation events is 0 for every synthetic person. In the course of the simulation, agents get infected and vaccinated and thus develop antibodies

and thus protection against reinfection. For the comparison in Table 1 we analyzed which share of the synthetic population has had at least

one infection or vaccination and which share of the synthetic population has had the one infection independent of the vaccination status. For

the comparison in Figure 1 we analyzed the share of the population that has had at least one infection or vaccination at various different time

points. The model data presented in Table 1 refers to the whole adult population (ages 18+). The model data presented in Figure 1 refers to

the whole population. All values are mean values for the respective group.

Use case 2

The results shown in the second use case are based on the same simulations as the first use case. Since we record the antibodies for each syn-

thetic person for each simulatedday,we canaggregate thesedata to theplots shown. Sincewealso recordwheneachperson is vaccinated,we
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can calculate the antibodies separately by vaccination status. For the analysis, we use onedata point permonth to save computing timeduring

the analysis and to keep the figures clear. However, the actual simulation runs on each day, so that a day-by-day view would be possible.

Antibody models for epidemiological predictive modeling of COVID-19: A literature search

The previous section described our approach for modelling antibody levels in an epidemiological context. In this section, we present an over-

view of similar approaches that exist in the literature, as of July 2022. We compiled a list of all models that have been listed in one of the

following resources: (a) theCovid-19 Forecast Hub (From the community sub-section, as of 07/21/22.) (59), (b) the European Covid-19 Forecast

Hub (From the community sub-section, as of 07/21/22.) (60,61), and (c) the European Covid-19 Scenario Hub (From the models sub-section, as

of 08/31/22.) (62). The final list contains 90models. Additionally, to the 86models from the three resources, we also included four moremodels

that we found through a PubMed literature search. The full list can be found in Appendix A. To get the relevant information for the individual

models, we went to the respective websites, and analyzed connected publications and available source codes (e.g. fromGitHub). We were in

particular interested in models that either (1) related antibodies and protection against infection and integrated this into their model or (2)

acknowledged and integrated into their model the waning of protection against infection (after vaccination and/or infection).

From this literature review, we conclude that, apart from Covasim,24,25 whose influence on our model is discussed in Sec. Background and

which can be found as model# 1 in Appendix A, none of the reviewed models explicitly integrates antibody levels as part of their infection

sub-model. This is also due to the fact that manymodels focus on the prediction of hospitalization numbers and thus do not need to explicitly

model individual antibody levels. However, some approaches seem to have integrated some kind of vaccination or antibody sub-model, but

no detailed description was found. This includes (see Appendix A for details): IHME, UC3M-EpiGraph, ECDC-CM_ONE, and SIMID-SCM.
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