
Distributed parallel Qsim implementation in Rust

Janek Laudan, Paul Heinrich, Kai Nagel

April 2024

1 Introduction

MATSim (Multi Agent Transport Simulation) [HNA16] is a well established software framework for agent-based
traffic modelling. Operating on a mesoscopic scale, it supports simulating urban regions encompassing mil-
lions of individual travelers. As the capability of the model expands, so does the desire to enhance its scale
or detail, increasing the computational demands of the software. At the same time, CPU (Central Process-
ing Unit) clock rates have plateaued for almost two decades, and the miniaturization in semiconductor design
is approaching physical limits [Lei+20]. Realizing performance improvements in MATSim to accommodate
computationally expensive simulations while maintaining fast execution times requires leveraging the parallel
computing capabilities of modern computer hardware.

Traffic in MATSim is modelled using synthetic persons which travel along a simulated road network to reach
designated activity locations. Over multiple iterations of the same simulated day, synthetic persons explore
various strategies to maximize their utility. One iteration consists of three phases: (1) the MobSim (Mobility
Simulation) phase, where synthetic persons execute their daily plans; (2) the scoring phase, where executed
plans are evaluated; and (3) the replanning phase, where a fraction of the synthetic population invents new
plans to test during the next iteration.

Among the three phases outlined above, phases 2 and 3 are embarrassingly parallel problems1. In contrast,
distributing the MobSim phase onto parallel computing hardware is more challenging, as synthetic persons in-
teract while travelling within the simulation. Therefore, when developing a new parallel architecture for MATSim
we focus on the MobSim phase, assuming that phase 2 and 3 can be integrated later.

The default implementation of the MobSim, QSim, already facilitates multicore systems using Java’s concur-
rency primitives and a shared memory algorithm. Implemented more than a decade ago by Dobler and Ax-
hausen [DA11], this approach effectively scales up to 8 processes. Executing the MobSim with more processes
does not improve execution times, as noted by Graur et al. [Gra+21]. They hypothesize that this limitation is
caused by memory bus saturation. In response, their MobSim implementation, Hermes, is single threaded and
focuses on optimizing cache locality as well as memory footprint at the cost of flexibility of what can be mod-
elled. Conversely, Strippgen [Str09] developed a MobSim implementation suitable for GPU (Graphics Process-
ing Unit) hardware which supports massive parallelism, yet integration into the existing simulation framework
proved to be challenging.

Instead of improving execution times on a singlemachine, we propose a distributedmessage passing algorithm
for the MobSim that facilitates scaling traffic simulations across multiple machines. This approach offers nu-
merous advantages. Firstly, it maintains the flexible programming model inherent to CPU-based programming,
in contrast to hardware accelerators. Secondly, by distributing the simulation’s load across multiple machines,
we effectively prevent the saturation of the memory bus, as each machine manages only a portion of the traffic
model. Implementing a distributed algorithm allows us to tap into the power of HPC (High-Performance Com-
puting) clusters, which are typically composed ofmany interconnectedmachines. Moreover, with each process
handling just a fraction of the traffic simulation, it should also become possible to improve cache locality, im-
proving execution times on single multicore machine as well.

A distributed queue simulation was initially proposed by Nagel and Rickert [NR01] and Cetin, Burri, and Nagel
[CBN03] with promising results. More recently, Wan et al. [Wan+23] implemented a distributed version of MAT-
Sim. However, their fastest execution times were observed with four processes achieving a speedup of two —
less than what is offered by the current parallelization approach. Another recent development is Mobiliti, intro-

1https://en.wikipedia.org/wiki/Embarrassingly_parallel

1

https://en.wikipedia.org/wiki/Embarrassingly_parallel

duced by Chan et al. [Cha+18], which is a discrete event simulation that focuses on optimistic synchronization
methods.

2 Methodology

The proposed algorithm by Cetin, Burri, and Nagel [CBN03] employs domain decomposition of the network
graph to distribute the simulation workload across processes. Multiple processes may be executed in parallel
on the same multicore machine, or each process can be run on separate machines. In most HPC setups, a
combination is used, with multiple machines executing several processes. Each process is responsible for one
domain derived from the domain decomposition phase, performing a single threaded traffic simulation for the
network segment within its domain. Vehicles crossing a domain boundary are transmitted as messages to the
corresponding process. Likewise, information on available storage capacities is communicated to neighbor
processes. Messages are exchanged between neighboring domains once per simulated time step, consolidat-
ing all vehicle crossings and capacity updates into a single message per neighboring process.

Cetin, Burri, and Nagel [CBN03] find that the runtime of their algorithm is constrained by the latency of mes-
sage exchanges, indicating that a new implementation should support low-latency networking hardware, such
as Infiniband2 or OmniPath3. The conventional high-level abstraction to utilize this hardware is MPI (Message
Passing Interface) [Mes23] which Java — the programming language for MATSim — does not natively support.
Attempts to run a Java setup with available libraries, such as Open MPI [VRS16][Gab+04], were unsuccessful.
Consequently, we opted to develop a prototype in Rust, which allows direct interfacing with the C implementa-
tion of Open MPI [LH24].

This prototype can process standard MATSim input files, enabling the use of existing simulation scenarios. Do-
main decomposition is performedusing theMETIS algorithm [KK98], with the option to assign nodeweights that
reflect the anticipated computational load for each network node. METIS balances the node-weights across
different graph partitions. For the presented results, the computational load for each network node is estimated
by parsing all plans of the synthetic population and counting the number of vehicles crossing each node. This
way, the computational load is balanced over the simulated day, but may vary for particular time steps in the
simulation.

After partitioning the network graph, each process loads its part of the network and all synthetic persons per-
forming their first activity within its domain. The traffic simulation executed in each process mirrors the current
QSim implementation described in Horni, Nagel, and Axhausen [HNA16, ch. 1]. The isolation of processes —
interacting only through message exchanges — simplifies the implementation by eliminating the need for man-
aging parallel access of data structures. At the end of a simulation time step, each process collects all vehicles
crossing into another domain. The same is done for storage capacity updates of incoming links that are shared
with neighbor domains. The collected information is sent to the corresponding neighbor domains in a single
message, so that only one message per neighbor domain is sent per time step. After sending all messages,
each process awaits messages from its direct neighbors, placing incoming vehicles on the appropriate links
and updating storage capacities of outgoing links, based on the received information.

3 Main Results

The prototype implementation is tested using the existing MATSim Metropole Ruhr scenario [Rak+24]. This
scenario includes a synthetic population of 491,175 persons for the 10% sample and a detailed traffic network
of 547,011 nodes and 1,193,056 links. Of the four modes covered in this scenario, car, and bicycle trips are
executed as network modes, while ride and walk are simulated as teleported modes (see [HNA24, ch. 12.3.1,
12.3.2]). Synthetic persons using pt (public transit) in the original scenario are excluded from the test setup
because the prototype implementation does not cover pt simulation. For comparison, a single iteration of the
10% sample is run with both the current QSim and the prototype implementation across various numbers of
processes. Additionally, a 1% sample of the synthetic population is tested with the prototype. These tests are
conducted on an HPC cluster powered by Intel Xeon Platinum 9242 processors, each offering 48 CPU-cores.
The networking infrastructure relies on OmniPath 100.

Figure 1 presents the performance outcomes of the different setups. The RTR (Real-Time Ratio), indicating the
ratio between simulated time and the wall clock time required for the simulation, is used as a measure. As a

2https://en.wikipedia.org/wiki/InfiniBand
3https://en.wikipedia.org/wiki/Omni-Path

2

https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/Omni-Path

585.7

20661.9

5472.2

29513

81.8

202.6

100

1000

10000

1 10 100 1000 10000
Number of Processes

R
ea

l T
im

e
R

at
io Run

a

a

a

Prototype 1%

Prototype 10%

QSim 10%

Real Time Ratio on Intel® Xeon® Platinum 9242 Processor

Figure 1: Real-Time Ratios of different benchmark runs

baseline, the 10% sample of theMetropole Ruhr scenario run with the current QSim implementation achieves an
RTR of 82 on a single process and a maximum RTR of 202 with 24 processes, yielding a 2.5x speedup. Notably,
the speedup plateaus beyond 6 processes, already achieving an RTR of 191. In contrast, the 10% sample runwith
the prototype reaches an RTR of 586 for a single process and a peak RTR of 20,662 for 1024 processes, resulting
in a 35x speedup compared to the single-process setup. Relative to the current QSim, this represents a 102x
speedup. The machines executing the simulation provide 48 CPU-cores, so that runs with up to 32 processes
are conducted on a single physical machine. Simulation runs with 64 or more processes are performed on
multiple machines, with process communication facilitated by the networking hardware.

Figure 1 also demonstrates the RTRs for a smaller 1% sample of the synthetic population, which runs approxi-
mately 10x faster on a single process compared to the 10% sample. The optimal RTR for this setupwas achieved
with 64 processes, after which it levels off for more processes. It is significant that both the 1% and 10% sam-
ples simulated with the prototype achieve RTRs in the same order of magnitude. However, for more than 2048
processes, the observed RTRs drop significantly below peak performance. Given that the HPC cluster’s network
operates in a tree structure, we speculate that for counts exceeding 2048 processes, messages must traverse
more edges within the communication network, impacting performance.

4 Conclusion

We have successfully developed a prototype of a distributed MobSim, demonstrating the feasibility of extend-
ing the MATSim framework into a distributed traffic simulation. Our prototype outperforms the existing QSim
implementation, achieving a speedup of 100 in a real-world scenario. With an RTR of 20,000, it’s now possible
to simulate an entire day in just 4.3 seconds. Profiling indicates that with a sufficient number of processes,
the computational time for traffic simulation becomes negligible, with the bulk of runtime spent on message
exchanges. While this limits further speedups under the implemented messaging methodology, it facilitates
the execution of significantly larger simulation scenarios with similar RTRs. Nonetheless, the declining RTR val-
ues for extensive process numbers, as shown in Figure 1, suggest that achieving such ideal conditions requires
further investigation.

The presented results demonstrate that a distributedMobSim implementation can lead to significant speedups.
The subsequent step is to incorporate this methodology into the existing framework. To preserve the com-
prehensive functionality of the current framework without the need for extensive redevelopment, an integra-
tion must be compatible with the JVM (Java Virtual Machine) ecosystem and capable of leveraging high-
performance networking hardware. Infinileap [KRS21] and hadroNIO [RKS21] are promising candidates to utilize
high-performance networking within the JVM.

3

References
[CBN03] Nurhan Cetin, Adrian Burri, and Kai Nagel. “A large-scale agent-based traffic microsimulation based

on queue model”. In: IN PROCEEDINGS OF SWISS TRANSPORT RESEARCH CONFERENCE (STRC),
MONTE VERITA, CH. 2003.

[Cha+18] Cy Chan et al. “Mobiliti: Scalable Transportation Simulation Using High-Performance Parallel Com-
puting”. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC). IEEE,
Nov. 2018, pp. 634–641. ISBN: 9781728103235, 9781728103211. DOI: 10.1109/ITSC.2018.8569397.

[DA11] Christoph Dobler and Kay W Axhausen. Design and implementation of a parallel queue-based traffic
flow simulation. en. 2011. DOI: 10.3929/ETHZ-B-000040273.

[Gab+04] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementa-
tion”. In: Recent Advances in Parallel Virtual Machine andMessage Passing Interface. Springer Berlin
Heidelberg, 2004, pp. 97–104. DOI: 10.1007/978-3-540-30218-6_19.

[Gra+21] DanGraur et al. “Hermes: Enabling efficient large-scale simulation inMATSim”. In:Procedia Comput.
Sci. 184 (Jan. 2021), pp. 635–641. ISSN: 1877-0509. DOI: 10.1016/j.procs.2021.03.079.

[HNA16] Andreas Horni, Kai Nagel, and Kay W Axhausen. The Multi-Agent Transport Simulation Matsim. en.
Ubiquity Press, July 2016. ISBN: 9781909188754. DOI: 10.5334/baw.

[HNA24] Andreas Horni, Kai Nagel, and Kay Axhausen. MATSim User Guide. Technische Universität Berlin.
Mar. 2024.

[KK98] George Karypis and Vipin Kumar. “Multilevelk-way Partitioning Scheme for Irregular Graphs”. In: J.
Parallel Distrib. Comput. 48.1 (Jan. 1998), pp. 96–129. ISSN: 0743-7315. DOI: 10.1006/jpdc.1997.
1404.

[KRS21] Filip Krakowski, Fabian Ruhland, andMichael Schöttner. “Infinileap: Modern High-Performance Net-
working for Distributed Java Applications based on RDMA”. In: 2021 IEEE 27th International Confer-
ence onParallel andDistributed Systems (ICPADS). IEEE, Dec. 2021, pp. 652–659. ISBN: 9781665408783,
9781665408790. DOI: 10.1109/ICPADS53394.2021.00087.

[Lei+20] Charles E Leiserson et al. “There’s plenty of room at the Top: What will drive computer performance
after Moore’s law?” en. In: Science 368.6495 (June 2020). ISSN: 0036-8075, 1095-9203. DOI: 10.
1126/science.aam9744.

[LH24] Janek Laudan and Paul Heinrich. Parallel Qsim Rust. Apr. 2024. DOI: 10.5281/zenodo.10960723.
[Mes23] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard Version 4.1. Nov.

2023.
[NR01] Kai Nagel and Marcus Rickert. “Parallel implementation of the TRANSIMS micro-simulation”. In:

Parallel Comput. 27.12 (Nov. 2001), pp. 1611–1639. ISSN: 0167-8191. DOI: 10.1016/S0167-8191(01)
00106-5.

[Rak+24] Christian Rakow et al. MATSim Metropole Ruhr v1.4.1-parallel-benchmark. Apr. 2024. DOI: 10.5281/
zenodo.10959019.

[RKS21] Fabian Ruhland, Filip Krakowski, andMichael Schöttner. “hadroNIO: Accelerating JavaNIO via UCX”.
In: 2021 20th International Symposium on Parallel and Distributed Computing (ISPDC). IEEE, July
2021, pp. 25–32. ISBN: 9781665432818, 9781665432825. DOI: 10.1109/ISPDC52870.2021.9521601.

[Str09] David Strippgen. “Investigating the technical possibilities of real-time interaction with Simulations
of mobile intelligent particles”. en. PhD thesis. Technische Universität Berlin, Oct. 2009. DOI: 10.
14279/depositonce-2272.

[VRS16] Oscar Vega-Gisbert, Jose E Roman, and Jeffrey M Squyres. “Design and implementation of Java
bindings in Open MPI”. In: Parallel Comput. 59 (Nov. 2016), pp. 1–20. ISSN: 0167-8191. DOI: 10.1016/
j.parco.2016.08.004.

[Wan+23] Lin Wan et al. “PATRIC: A high performance parallel urban transport simulation framework based
on traffic clustering”. In: Simulation Modelling Practice and Theory 126 (July 2023), p. 102775. ISSN:
1569-190X. DOI: 10.1016/j.simpat.2023.102775.

4

https://doi.org/10.1109/ITSC.2018.8569397
https://doi.org/10.3929/ETHZ-B-000040273
https://doi.org/10.1007/978-3-540-30218-6_19
https://doi.org/10.1016/j.procs.2021.03.079
https://doi.org/10.5334/baw
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1006/jpdc.1997.1404
https://doi.org/10.1109/ICPADS53394.2021.00087
https://doi.org/10.1126/science.aam9744
https://doi.org/10.1126/science.aam9744
https://doi.org/10.5281/zenodo.10960723
https://doi.org/10.1016/S0167-8191(01)00106-5
https://doi.org/10.1016/S0167-8191(01)00106-5
https://doi.org/10.5281/zenodo.10959019
https://doi.org/10.5281/zenodo.10959019
https://doi.org/10.1109/ISPDC52870.2021.9521601
https://doi.org/10.14279/depositonce-2272
https://doi.org/10.14279/depositonce-2272
https://doi.org/10.1016/j.parco.2016.08.004
https://doi.org/10.1016/j.parco.2016.08.004
https://doi.org/10.1016/j.simpat.2023.102775

	Introduction
	Methodology
	Main Results
	Conclusion

