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Abstract—As semiconductor design approaches physical limits,
computer processing speeds are stagnating. This poses significant
challenges for traffic simulations, which are becoming more
and more computationally demanding. To maintain fast exe-
cution times while accommodating more complex simulations,
it is essential to utilize the parallel computing capabilities of
modern hardware. This paper discusses the need for an updated
architectural design in the MATSim traffic simulation framework
to take advantage of parallel computing infrastructures. We
introduce a prototype that adapts the existing traffic simulation
logic to a distributed parallel algorithm. Extensive benchmarks
have been conducted to evaluate the prototype’s performance and
identify its limitations. The results demonstrate that the prototype
performs up to 100 times faster than the current implementation.
Based on these findings, we advocate for the integration of a
distributed traffic simulation within the MATSim framework and
outline necessary steps to enhance the prototype.

Index Terms—Mulit-Agent Transport Simulation, Distributed
Computing, MPI, Parallel Computing

I. INTRODUCTION

MATSim (Multi-Agent Transport Simulation) [1] is a well
established software framework for agent-based traffic mod-
elling. Operating on a mesoscopic scale, it supports simulating
urban regions encompassing millions of individual travelers.
As the capability of the model expands, so does the desire
to enhance its scale or detail, increasing the computational
demands of the software. At the same time, CPU (Central
Processing Unit) clock rates have plateaued for almost two
decades, and the miniaturization in semiconductor design
is approaching physical limits [2]. Realizing performance
improvements in MATSim to accommodate computationally
expensive simulations while maintaining fast execution times
requires leveraging the parallel computing capabilities of mod-
ern computer hardware.

Traffic in MATSim is modelled using synthetic persons
which travel along a simulated road network to reach desig-
nated activity locations. Over multiple iterations of the same
simulated day, synthetic persons explore various strategies to
maximize their utility. One iteration consists of three phases:
(1) the mobsim (mobility simulation) phase, where synthetic
persons execute their daily plans; (2) the scoring phase, where

executed plans are evaluated; and (3) the replanning phase,
where a fraction of the synthetic population invents new plans
to test during the next iteration.

Among the three phases outlined above, phases 2 and 3
are embarrassingly parallel problems1. In contrast, distributing
the mobsim phase onto parallel computing hardware is more
challenging, as synthetic persons interact while travelling
within the simulation. Therefore, when developing a new
parallel architecture for MATSim we focus on the mobsim
phase, assuming that phase 2 and 3 can be integrated later.

The default implementation of the mobsim, QSim, already
facilitates multicore systems using Java’s concurrency primi-
tives and a shared memory algorithm. Implemented more than
a decade ago by Dobler and Axhausen [3], this approach
effectively scales up to 8 processes. Executing the mobsim
with more processes does not improve execution times, as
noted by Graur, Bruno, Bischoff, et al. [4]. In response,
their mobsim implementation, Hermes, is single threaded and
focuses on optimizing cache locality as well as memory
footprint at the cost of flexibility of what can be modelled.
Their single threaded implementation already saturates the
memory bus, which leads them to the conclusion that a
parallel mobsim would not improve runtimes. Conversely,
Strippgen [5] developed a mobsim implementation suitable
for GPU (Graphics Processing Unit) hardware which supports
massive parallelism, yet integration into the existing simulation
framework proved to be challenging. Besides the MATSim
ecosystem, other attempts for parallel traffic simulations were
undertaken utilizing multicore hardware [6]–[8] and GPU
accelerators [9]–[11].

Instead of improving execution times on a single machine,
we propose a distributed message passing algorithm for the
mobsim that facilitates scaling traffic simulations across mul-
tiple machines. This approach offers numerous advantages.
Firstly, in contrast to programming hardware accelerators, it
preserves the flexible programming model inherent to CPU-
based programming. Secondly, by distributing the computa-

1https://en.wikipedia.org/wiki/Embarrassingly parallel
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tional load across multiple machines, we effectively prevent
the saturation of the memory bus, as each machine man-
ages only a portion of the traffic model. Implementing a
distributed algorithm allows us to tap into the power of HPC
(High-Performance Computing) clusters, which are typically
composed of many interconnected machines. Moreover, with
each process handling just a fraction of the traffic simulation,
it should also become possible to improve cache locality,
improving execution times on single multicore machine as
well.

A distributed queue simulation was initially proposed by
Nagel and Rickert [12] and Cetin, Burri, and Nagel [13] with
promising results. More recently, Wan, Yin, Wang, et al. [14]
implemented a distributed version of MATSim. However, their
fastest execution times were observed with four processes
achieving a speedup of two — less than what the current
parallelization approach offers. Another recent development is
Mobiliti independent of MATSim, introduced by Chan, Wang,
Bachan, et al. [15], a discrete event simulation that focuses on
optimistic synchronization methods, which scales very well on
HPC infrastructure.

In this work, we describe the prototype of a distributed
mobsim implementation. We apply the concept of paralleliza-
tion from Cetin, Burri, and Nagel [13] to MATSim’s default
mobsim implementation, QSim, which, in contrast to Mobiliti,
uses conservative synchronization. We believe this approach
better fits the time step-based simulation model of MATSim.
The prototype is tested on the HRN@ZIB HPC cluster, capable
of scaling to several thousand processes. Based on the executed
benchmarks, we discuss additional enhancements to take full
advantage of modern distributed computing hardware.

II. METHODOLOGY

The proposed algorithm by Cetin, Burri, and Nagel [13] em-
ploys domain decomposition of the network graph to distribute
the simulation workload across processes. Multiple processes
may be executed in parallel on the same multicore machine,
or each process can be run on a separate machine. In most
HPC setups, a combination is used, with multiple machines
executing several processes. Each process is responsible for
one domain derived from the domain decomposition phase,
performing a single threaded traffic simulation for the network
segment within its domain. Vehicles crossing a domain bound-
ary are transmitted as messages to the corresponding pro-
cess. Likewise, information on available storage capacities is
communicated to neighbor processes. Messages are exchanged
between neighboring domains once per simulated time step,
consolidating all vehicle crossings and capacity updates into
a single message per neighboring process.

Cetin, Burri, and Nagel [13] find that the runtime of their
algorithm is constrained by the latency of message exchanges,
indicating that a new implementation should support low-
latency networking hardware, such as Infiniband2 or Omni-
Path3. The conventional high-level abstraction to utilize this

2https://en.wikipedia.org/wiki/InfiniBand
3https://en.wikipedia.org/wiki/Omni-Path

hardware is MPI (Message Passing Interface) [17] which
Java — the programming language for MATSim — does not
natively support. Attempts to run a Java setup with available
libraries, such as Open MPI [18][19], were unsuccessful.
Consequently, we opted to develop a prototype in Rust, which
allows direct interfacing with the C implementation of Open
MPI. The prototype implementation is available as open-
source code on GitHub4 and this paper is based on v0.1.0
[20].

This prototype can process standard MATSim input files,
enabling the use of existing simulation scenarios. Domain
decomposition is performed using the METIS library [21],
with the option to assign node weights that reflect the an-
ticipated computational load for each network node. METIS
balances the node-weights across different graph partitions.
For the presented results, the computational load for each
network node is estimated by parsing all plans of the synthetic
population and counting the number of vehicles crossing each
node. This way, the computational load is balanced over the
simulated day, but may vary for particular time steps in the
simulation. As the domain decomposition is node-based, all
links pointing toward a node are assigned to the same network
partition as the node. Figure 1b shows the result of the domain
decomposition for the traffic scenario used in section III, with
32 processes. It is evident that subdomains in the center of
the traffic network tend to be smaller as more traffic — and
consequently, more computational work — is anticipated.

The diagram in figure 1a illustrates how nodes and links
of the traffic network are distributed across subdomains. In
the example, the network is divided into four partitions, each
assigned to corresponding processes. Process 0 has process
1 and 3 as direct neighbors. Their neighbor relationship is
established by the shared links, displayed as thick dashed
lines. To explain how links are shared across processes, we
focus on the single link shared between process 0 and 1.
Assuming that it points towards the node located on process 0,
the link is attributed to this process and its representation —
including the vehicle queue — is located on process 0. Process
1 maintains a mirrored representation of this link, which tracks
the storage capacities of the full representation on process 0
and serves as a buffer for vehicles entering the link, before
they are transmitted to process 0.

After partitioning the network graph, each process loads
its portion of the network along with all synthetic persons
performing their first activity within its domain. The traffic
simulation executed in each process mirrors the current QSim
implementation, as described in Horni, Nagel, and Axhausen
[1, ch. 1]. The isolation of processes — interacting only
through message exchanges — simplifies the implementation
by eliminating the need for managing parallel access to data
structures. The simulation work is executed on each process
using the following phases:

1) Activities: Synthetic persons performing activities are
stored in a priority queue, ordered by the end time of

4https://github.com/matsim-vsp/parallel qsim rust
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(a) (b)

Fig. 1: (a) General concept of domain decomposition. Small circles are nodes in traffic network, large circles represent a
process simulating a domain, lines are links in the road network, thick dashed lines are shared links between processes, thin
dotted lines are domain boundaries, thick dotted lines represent communication channels between processes [16]; (b) Section
of the network split into 32 domains, which is used to conduct benchmarks explained in section III

their activities. Those who have reached the end time
of an activity are removed from the queue and start the
next plan element, which involves either a teleportation
leg or a leg performed on the simulated network.

2) Teleport: Persons who finish their teleportation leg start
the next plan element and are placed into the activity
queue (see [22, ch. 12.3.1, 12.3.2] for the concept of
teleported legs).

3) Nodes: This step involves iterating over all nodes of the
network partition, moving vehicles that have reached the
end of a link onto the next link in the vehicle’s route.

4) Links: The movement of vehicles on the network is
constrained by the flow and storage capacities of links.
During this step, the bookkeeping of these capacities is
updated for the next time step. Additionally, vehicles on
mirror links that must be transferred to another process,
as well as changes to the storage capacities that must be
sent to mirroring links on other processes, are collected.

5) Send: The collected information is sent to the corre-
sponding neighbor domains in a single message, en-
suring that only one message per neighbor domain is
sent per time step. This step includes the serialization
of messages into the wire format and the issuance
of a non-blocking ISend call to the underlying MPI
implementation.

6) Receive: A blocking Recv call to the underlying MPI
implementation is issued for each direct neighbor do-
main. This step accounts for wait times due to workload
imbalances and the time required to transmit messages
over the communication network.

7) Handle: Received messages are de-serialized from wire
format back into the data structures used in the compu-
tation.

Phases 1 to 4 can be summarized as simulation work, while
phases 5 to 7 relate to inter-process communication. The main
output of the mobsim is an events log that captures events
such as activities starting and ending or vehicles entering
and leaving network links. During the execution of the mob-
sim, each process generates the same events as the current
MATSim implementation and writes them into an events file.
This ensures that, once the files are merged, the results of
the simulation run can be compared to the original mobsim
implementation.

III. RESULTS

The prototype implementation is tested using the existing
MATSim Metropole Ruhr scenario [23], which includes a
synthetic population of 491,175 persons for the 10% sample
and a detailed traffic network of 547,011 nodes and 1,193,056
links. This scenario simulates 36 hours (129,600s) of simula-
tion time. Of the four modes covered, car and bicycle trips are
executed as network modes, while ride and walk are simulated
as teleported modes (see [22, ch. 12.3.1, 12.3.2]). Synthetic
persons using pt (public transit) in the original scenario are
excluded from the test setup as the prototype does not cover
pt simulation. Both the current QSim and the prototype are
run for a single iteration of the 10% sample, across various
numbers of processes, and additionally, a 1% sample is tested
with the prototype. These tests are conducted on an HPC
cluster equipped with Intel Xeon Platinum 9242 processors,



each offering 48 CPU-cores, and an OmniPath 100 networking
infrastructure.

Figure 2 presents the performance outcomes. The RTR
(Real-Time Ratio), indicating the ratio between simulated time
and wall clock time required for the simulation, is used as a
measure. The 10% sample using the current QSim achieves an
RTR of 82 on a single process and peaks at 202 with 24 pro-
cesses, yielding a 2.5x speedup. Notably, the speedup plateaus
beyond 6 processes, already achieving an RTR of 191. In
contrast, the 10% sample simulated with the prototype reaches
an RTR of 586 for a single process and a peak of 20,662
for 1024 processes, resulting in a 35x speedup compared to
the single-process setup and a 102x speedup relative to the
current QSim. The runs with up to 32 processes utilize a single
physical machine, while runs with 64 or more processes span
multiple machines, with process communication facilitated by
the networking hardware.

The RTR for the smaller 1% sample is about 10x faster on
a single process than the 10% sample. The optimal RTR for
this setup was achieved with 64 processes, after which it levels
off. It is notable that both the 1% and 10% samples simulated
with the prototype achieve RTRs of similar magnitudes. Ad-
ditionally, the 1% sample approaches the RTR of the dry run,
described next.

To estimate the theoretical maximum performance, a dry run
is included in the analysis (see III-B) with the fastest execution
time achieved on a single process, as no inter-process com-
munication impedes the execution. The RTR decreases with
more processes and stabilizes around 31,000.

For more than 2048 processes, the RTRs observed in Figure
2 significantly drop below peak performance for both the 1%
and 10% scenarios. As both scenarios directly write events
files for the executed mobsim onto a shared network drive,
and given that the dry run maintains a constant RTR for up
to 16,384 processes, we suspect that the network connection
to the storage becomes saturated with write requests from too
many processes simultaneously.

A. Simulation Scenario

To understand where time is spent during the simulation, we
conduct an analysis of the individual algorithm phases. Figure
3 presents the average durations of each phase during the
execution of one simulation time step. Blue colors represent
simulation work from phase 1 to 4 as detailed in Section II,
while yellow colors depict execution times related to inter-
process communication, covering phases 5 to 7 from the same
section. In setups with only one process, the entire time is
dedicated to actual simulation work. The bulk of this work
is consumed by the ’nodes and links’ logic, which drives the
traffic simulation on the network. Starting with two processes,
the prototype also allocates time to communication, which
includes waiting for neighboring processes that may be slower
in executing their share of the traffic simulation, as well as the
time required to transfer messages over the network. As the
simulation scales to more processes, the average time spent
on simulation work decreases, eventually approaching timings
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Fig. 3: Average durations for performing one time step in
the simulation, distinguished by simulation work (blue) and
message exchange (yellow) for the dry run

similar to those in the dry run — less than one microsecond per
time step on average (see Figure 5). Conversely, the time spent
on communication remains relatively stable as the number
of processes increases, averaging around 26 microseconds
per time step. Figure 3 illustrates that in setups with a
large number of processes, the time spent on communication
largely determines the overall execution times, explaining the
plateauing RTR observed in Figure 2.

Investigating the computation time spent over the simulated



day, as depicted in Figure 4, it becomes apparent that load
balancing of computational work is less important when the
scenario is divided into sufficiently many domains. The plot
illustrates the difference between the fastest and slowest exe-
cution of simulation work in blue and the maximum durations
dedicated to communication across all processes in yellow.
Timings measured are averaged over 30 simulation time steps
to reduce the volume of tracing data written to disk. For the
setup with 16 processes, the differences between the slowest
and fastest processes align with the traffic volumes simulated.
Additionally, the maximum durations for communication are
similar to the differences between fastest and slowest execution
times for simulation work, suggesting that communication
time is largely influenced by load imbalances. Specifically,
the process that finishes simulation work first must wait in
the receive phase (see phase 6) until the slowest process com-
pletes. Only then messages can be exchanged. In contrast, in
the 1024-process setup, only marginal differences in execution
times for simulation work can be observed at any point during
the simulation. However, the durations for the communication
phase significantly higher compared to the differences in sim-
ulation work durations, indicating that communication times
in this setup are predominantly driven by the time necessary
for message exchange in the communication layer. The 64-
process setup exhibits a combination of both effects, showing
variations in the time required to process a simulation step, and
communication times being influenced by both, imbalances in
simulation work and the time required to exchange messages
over the network.

B. Dry run

The distributed mobsim implementation’s performance pri-
marily hinges on two factors: the computation time for the
traffic simulation and the time required for inter-process
communication. To analyze the issues with message exchange
specifically, we conduct a dry run using the standard input
data, but without loading any plans. This setup performs
simulation steps without actual computational work, allowing
us to estimate the lower bound for communication timings, as
processes exchange empty messages at each simulation time
step.

Figure 5, similar to figure 3, presents the average durations
for a simulation time step, categorized by the number of
processes used. With no real simulation tasks performed,
the operation time for the simulation’s framework remains
below one µs per time step, regardless of the number of
processes. However, communication times exhibit substantial
variability, with durations for sending and handling messages
staying consistent across various process counts, except when
using just two processes. The time taken to receive messages
increases with the number of processes up to 8 and then
stabilizes at approximately 7µs for up to 32 processes. Beyond
64 processes, this synchronization time levels off around 15µs.

Setups with up to 32 processes are executed on a single
machine, and the variable durations for communication are
directly correlated to the maximum number of neighbors any

process manages. More neighbors mean more messages to pro-
cess, leading to longer execution times for communication. As
all other processes must wait for the process with the highest
number of neighbors, the communication time is determined
by the maximum number of neighbors any process in the
simulation manages. Dividing the average duration for the
receive phase by the maximum number of neighbors yields 1µs
on single machine setups and 1.5µs on multi machine setups
for one message exchange. The OmniPath 100 specification
notes latencies of 0.7µs for network requests. As one message
exchange in our implementation consists of two MPI-network
requests for MProbe and MRecv, our timings show that we
achieve optimal latency values on the hardware utilized.

IV. DISCUSSION

Twenty years ago, Cetin, Burri, and Nagel [13] speculated
that the runtime of their proposed algorithm is bounded by the
latencies in network communication, but they were unable to
measure this hypothesis for low latency networking hardware.
With more computing power at hand, we can show that the
execution times for a distributed simulation are in fact latency
bound even on high-performance networking hardware like
OmniPath 100. As shown in figures 3 and 4 the time spent
computing the traffic simulation becomes negligible while the
time necessary for inter process communication remains stable
for large number of processes.

The presented results demonstrate that switching from
Java to a native language improves performance on a single
machine by a factor of 7. Considering, that the prototype
does not include all features implemented in the original
QSim implementation, this speedup is comparable to what
is achieved with Hermes [4]. Notably, no specific focus was
placed on performance optimization for a single machine in
the prototype, which uses complex data structures including
pointers, vectors, hashmaps, and strings. This speedup can
likely be attributed to the more compact memory layout and
improved memory locality offered by structs in Rust compared
to objects in Java.

Our findings further reveal that when the simulation domain
is partitioned into multiple smaller segments, each process
is tasked with only a small portion of the overall simula-
tion workload. This decentralization significantly reduces the
amount of data each process needs to handle, potentially
relieving pressure on the memory bus, which we suspect to be
a major bottleneck in the current QSim implementation. Such
a reduction in data transfer between memory and CPU sug-
gests that also a Java-based implementation of our distributed
algorithm could achieve RTRs comparable to those observed
with the Rust implementation.

Additionally, the results suggest that transitioning the mob-
sim from a shared memory to a message passing algorithm
benefits simulation setups run on a single multicore machine,
as well as large-scale traffic simulations in a distributed HPC
environment. Currently, our scenarios do not fully utilize the
capabilities of modern HPC clusters like NHR@ZIB, which
provides over 100,000 computing cores. The performance



16 64 1024

0e+00 5e+04 1e+05 0e+00 5e+04 1e+05 0e+00 5e+04 1e+05

0

100

200

300

Simulation Time

M
ax

. D
ur

at
io

n 
[µ

s]

Phase

Communication

Work

Max. duration of comm. and diff. between max. and min. duration for simulation work 

Fig. 4: Differences in fastest and slowest duration to execute simulation work of one time step across all processes (blue),
max. duration to perform communication across all processes (yellow). Each data point is the average of 30 simulation steps.

0

5

10

15

20

1 2 4 8 16 32 64 128 256 512 1024
Number of Processes

M
ea

n 
D

ur
at

io
n 

[µ
s]

Phase

send

receive

handle

activities

teleport

nodes

links

Durations of algorithm phases − Dry Run

Fig. 5: Average durations for performing one time step in
the simulation, distinguished by simulation work (blue) and
message exchange (yellow) for the dry run

of our tested scenario peaks at 1024 processes. To better
leverage available hardware, two strategies are recommended:
(1) increase the amount of computation, and (2) reduce the
time necessary for inter process communication.

Increasing the computation is straightforward; the proposed
architecture allows for running larger scenarios, potentially
encompassing entire countries rather than just regions, without
degrading RTR. Reducing the time spent on inter-process

communication poses more challenges, but there are several
viable approaches:

• As indicated in III-B, the communication time is primar-
ily determined by the process with the highest number
of neighbors. In our test runs involving large numbers of
processes, the maximum number of neighboring domains
reached up to 10, while the average remained around
5. By optimizing domain decomposition to reduce the
maximum number of neighbors, we could decrease the
number of exchanged messages, thereby reducing com-
munication times. The objective of this optimization is
to bring the maximum number of neighbors closer to the
average value.

• The current architecture requires synchronization of
neighbor processes at every simulated time step. By
adapting the synchronization to account for the time
vehicles travel across links, as well as backwards trav-
elling holes as suggested by Charypar, Axhausen, and
Nagel [24], the number of messages exchanged could be
reduced.

For the remaining inter-process communication, improve-
ments can be implemented based on insights from Ghosh,
Halappanavar, Kalyanaraman, et al. [25] and Gropp, Hoefler,
Thakur, et al. [26, ch. 2 and 3]:

• Currently, our point-to-point communication involves
three MPI-calls: ISend, MProbe, and MRecv, neces-
sitating two network requests per message exchange.
By adopting non-blocking counterparts for MProbe and
MRecv, we could alleviate the constraints on the order of
execution, though the total number of network requests
would remain unchanged.



• Transitioning to a higher level of abstraction for
inter-process communication could also be beneficial.
MPI v3 introduces collective communication primi-
tives for distributed graph topologies, which could op-
timize the physical locality of adjacent simulation do-
mains. This could be particularly effective using the
neighbor_alltoallv function.

• MPI 3’s one-sided communication infrastructure allows
asynchronous access to memory sections of remote pro-
cesses through MPI windows, reducing the synchroniza-
tion required for data exchange. However, this method
requires careful management of memory offsets, making
it more complex to implement.

Ghosh, Halappanavar, Kalyanaraman, et al. [25] found that
using neighbor collectives and one-sided communication can
yield speedups of 1.5 to 6 times compared to point-to-point
communication. Combining architectural improvements with
enhanced process synchronization could potentially multiply
the speedups observed in the benchmark.

The RTR presented in Figure 2 indicates a performance
drop for large numbers of processes, likely due to I/O (In-
put/Output) performed during the simulation. Maintaining high
performance with many processes necessitates a robust I/O
strategy. Instead of frequent I/O operations on a network drive,
local SSDs could be utilized, with output data transferred
to the final location at once. Alternatively, distributed I/O
solutions, like MPI-I/O [26, ch. 7], could be explored.

V. CONCLUSION

We have successfully developed a prototype of a distributed
mobsim, demonstrating the feasibility of extending the MAT-
Sim framework into a distributed traffic simulation. Our proto-
type outperforms the existing QSim implementation, achieving
a speedup of 100 in a real-world scenario. With an RTR of
20,000, it’s now possible to simulate an entire day in just
4.3 seconds. Profiling indicates that with a sufficient number
of processes, the computational time for traffic simulation
becomes negligible, with the bulk of runtime spent on inter
process communication. While this limits further speedups
under the implemented communication strategy, it enables
the execution of significantly larger simulation scenarios with
similar RTRs. Nonetheless, we still see room for improvement
by reducing the time spent on inter-process communication, as
well as in developing a comprehensive I/O strategy to ensure
the scalability for even more processes.

The results of the conducted benchmark indicate that op-
timizing the domain decomposition for minimal edge cuts
or computational load on each partition is less critical com-
pared to reducing the maximum number of neighbors for all
partitions of a simulation setup, as the computation time is
dominated by the number of message exchanges, which is
related to the maximum number of neighbors.

Transitioning from a shared memory to a message-passing
algorithm benefits simulation setups run on single machines
as well. Unlike the current mobsim implementation, which
achieves a 2.5x speedup through parallelization, the prototype

implementation scales well up to 32 processes, on a single
machine, with a speedup of 20 compared to a simulation
executed on a single core.

The achieved speedups suggest that a distributed mobsim
implementation should be integrated into the existing MATSim
framework. To preserve the comprehensive functionality of
the current framework without the need for extensive re-
development, integration must be compatible with the JVM
(Java Virtual Machine) ecosystem and capable of leveraging
high-performance networking hardware. Infinileap [27] and
hadroNIO [28] are promising candidates for utilizing high-
performance networking within the JVM. As the architecture
of MATSim will change fundamentally with the introduction
of a distributed mobsim, we must consider how to incorporate
other parts of the framework into the architecture. One of the
main challenges will be the propagation of mobsim events
to other modules, such as the routing and scoring module
in a distributed computing environment, which is currently
investigated.
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