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Abstract—This paper explores the integration of distributed
event processing in the context of real-time routing within a
parallel transportation simulation framework for the Multi-
Agent Transport Simulation (MATSim). A novel simulation
prototype, utilizing Rust and MPI, demonstrates significant re-
ductions in computation time by applying domain decomposition
of the network and assigning each part to a separate process.
However, sharing and processing events within this setup remains
challenging. We present a proof of concept for integrating
distributed event processing. Our evaluation has shown that real-
time routing significantly increases simulation runtime because
uneven distribution of routing requests increases load imbalances
and makes speedups less efficient. Sharing event data between
processes benefits from smaller subdomains. However, global syn-
chronization for sharing data leads to waiting times introduced
by load imbalances.

Index Terms—Mulit-Agent Transport Simulation, Distributed
Computing, MPI, Real-Time Routing

I. INTRODUCTION

Multi-agent simulations are powerful tools for transportation
planning. The persistent demand for larger and more finely
detailed models amplifies the computational burden of these
simulations. Executing them within a parallel or even dis-
tributed environment is the key for expanding models while
maintaining a reasonable runtime.

In the context of multi-agent simulations, Rousset et al. [1]
provide a helpful overview of existing parallel and distributed
approaches. The presented frameworks are implemented in
different programming languages such as Java [2] or C++ [3],
[4], providing abstract functionality for agent modeling and
general communication as well as functionality for agents to
query the state of neighboring agents, which may be handled
by another process. However, the specific implementation of
complex simulation logic, such as communicating a general
traffic state, is generally left to the implementing user.

The traffic simulator Mobiliti [5] works as a parallel discrete
event simulator instead of simulating fixed time steps, and
achieves impressive speedups on distributed HPC infrastruc-
ture. Building on Mobiliti, Chan et al. [6] implement dis-
tributed ad-hoc routing similar to the concept presented in this
article: each partition has a single router, which is aware of
current travel times across the entire network. In contrast to our
approach, travel times are only updated once they are higher

than a certain factor. Following the actor model, each link takes
on the responsibility of transmitting its current travel time to
the routing components. Other distributed transport simulators
like dSUMO [7] do not provide distributed event processing
functionality.

Another well-established simulator is the the Multi-agent
transport simulation (MATSim) [8] having a large commu-
nity and many extension points. MATSim operates as a co-
evolutionary algorithm with a three-phase iterative approach
serving as an open-source framework for large-scale agent-
based transportation simulations. Within MATSim, each syn-
thetic person (agent) has a plan that represents its daily sched-
ule. A plan consists of a concatenation of activities and legs.
Activities are performed at specific times and locations, while
legs represent journeys between activities. Agents optimize
their travel behavior over multiple iterations of the same simu-
lated day, leveraging the co-evolutionary algorithmic approach.

Each iteration consists of three phases: mobility simula-
tion, scoring, and replanning, with the mobility simulation
consuming most of the computational time. The mobility
simulation involves simulating the movement of agents on
the traffic network while considering the capacities of links
and intersections. Currently, the default implementation of the
mobility simulation in MATSim, QSim (Queue-based traffic
flow simulation) [9], scales up to 8 processes and relies on
native Java concurrency primitives. However, a new prototype
in Rust achieves significantly reduced simulation times1[10].
Utilizing the MPI (Message Passing Interface), it runs on
distributed high-performance clusters. The parallelization ap-
proach uses domain decomposition dividing the network into
subnetworks. Each process executes the mobility simulation
for its subnetwork. Vehicles crossing a domain boundary are
communicated as messages to neighboring processes.

Event handling (as described in Chapter II) in such a
distributed environment is more complex than in monolithic
software because data must be explicitly shared via messages
instead of passing data pointers between functions within the
same process. This complexity affects components responsible
for event processing during simulation, such as real-time
routers. These routers must be kept up-to-date with the actual

1https://github.com/matsim-vsp/parallel qsim rust
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travel times across the entire network. Since vehicles can
cause congestion on network links, travel times may change
accordingly. The message passing functionality needs to be
expanded, as the current message passing only supports point-
to-point communication but communicating travel times of the
whole networks relies on collective messaging.

The contribution of this paper is twofold: (i) we implement
distributed event processing demonstrated through the example
of ad hoc rerouting in the distributed prototype of MATSim
and (ii) we assess the influence on the runtime performance.

II. PRINCIPLES OF DISTRIBUTED EVENT PROCESSING

The QSim generates events that describe the movement of
the agents within the mobility simulation, such as ending an
activity, entering a network link with a vehicle or leaving a
vehicle. By reading the event stream, consumers gain insight
into the state of the QSim. Traffic state information, such as
travel times for links, can be extracted from this event stream.

Various components can be plugged into the QSim, with
a distinction between online and offline processing. Offline
processing can be conducted completely independently from
the simulation, typically on the output files after the simulation
has finished. In contrast, ad-hoc routing necessitates online
event processing, which is performed while the simulation
runs, as it influences the behaviour of the simulation.

In general, there are several approaches to integrate such
components into the distributed QSim. They can be executed
by the same QSim processes, by the same cluster or even
remotely. For the ad-hoc router as the first additional compo-
nent of the distributed QSim, we decided to implement it on
the same processes as the QSim itself. A description of the
implementation is provided in Chapter III.

The prototype implementation of the distributed QSim
demonstrates a hundredfold speedup over the current default
implementation. Regardless of the chosen architecture, main-
taining the performance gains achieved by the distribution of
work is crucial when integrating new features. Performing
a routing query takes significantly longer than a simulation
step without routing: milliseconds versus microseconds. In-
troducing ad-hoc routing can disrupt load balancing between
processes, which greatly impacts overall performance.

Another crucial aspect is to ensure that the event processing
does not degrade the overall application performance. Specifi-
cally, in the context of routing, this concern pertains to the
router update step. In general, the update process can be
divided into three phases: (i) aggregating current events into
update messages that the service understands (preprocessing),
(ii) communicating these updates (communication), and (iii)
making the service apply these updates (postprocessing).

Preprocessing and communication can be influenced by
the manner a service is integrated in the mobility simulation
and by the chosen architecture. To take full advantage of
the distributed architecture, it is essential to invest effort in
preprocessing on each subdomain. As the number of domains
increases, the runtime of preprocessing per domain decreases.

III. DISTRIBUTED PROTOTYPE

The open-source prototype [11] is implemented in the pro-
gramming language Rust and utilizes MPI for communication.
Each process executes the QSim for a specific spatial domain,
synchronizing with all neighbor processes after completing a
simulated time step. It is important to note that this synchro-
nization step is performed locally. When a process has received
messages from all of its neighbors, it can proceed, even if its
neighbors are still awaiting messages from other processes.
Consequently, a process can advance one time step ahead of
its neighbors.

Given that all communication relies on parallelization with
MPI, we opt to integrate the router into each process rather
than as a separate entity. This approach minimizes commu-
nication overhead and eliminates the need for asynchronous
code.

A. Choice of Routing Algorithm

The prototype incorporates a within-day replanning engine
that employs ad-hoc routing to demonstrate distributed event
processing. If the engine is turned on, instead of adhering to
predefined routes from their plans, agents will perform ad-hoc
routing for the upcoming trip. This ad-hoc re-routing includes
access and egress legs to and from the main leg, as well
as the route of the main leg itself. The replanning engine is
constructed based on the principles outlined by Dobler et al.
[12].

Numerous well-established routing algorithms designed for
graphs with dynamic travel times are available. Bast et al.[13]
highlights two effective approaches for addressing this sce-
nario: goal-directed algorithms such as the A* algorithm using
landmarks [14], and hierarchical techniques such as CCH
(Customizable Contraction Hierarchies) [15]. A* algorithms
generally have slower query times but relatively fast travel time
updates, while CCH is the opposite. Due to its comparably
straightforward implementation, we opt for a custom A*
landmarks implementation. Initially, we attempted to leverage
the ”rust road router” CCH implementation2 to achieve fast
query times. However, due to heavy reliance on unstable Rust
features and limited hardware compatibility, we opted for an
alternative approach.

B. Ad-Hoc Router Implementation

The simulation supports various vehicle types, each dis-
tinguished by varying maximum speeds. Preprocessing the
landmark data per vehicle type improves the goal direction,
as the preprocessed data is then closer to the actual travel
times of each vehicle. The preprocessing is performed once
before the simulation commences. If the travel times increase
due to congestion on the simulated network, the algorithm still
works correctly, albeit with slower query times.

2https://github.com/kit-algo/rust road router

https://github.com/kit-algo/rust_road_router
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Figure 1: The MPI_Allgatherv Call. The squares corre-
spond to the data that will be sent. The call is made on each
process. A buffer with the corresponding size of all data must
be allocated by the receiving process.

C. Router Update

To update travel times in the router modules, each process
must share its travel times with every other process. To
minimize global synchronization calls, travel times are shared
every 15 simulated minutes. The router update generally works
as follows.

a) Preprocessing: Each process computes the average
travel times for each link within its spatial domain over the past
15-minute interval. For links that have not experienced any
traffic during this interval, the initial travel time is assumed.
Initial travel times are only communicated to other processes if
a different travel time was communicated during the previous
update step.

b) Communication: MPI’s Allgatherv function is
utilized to communicate preprocessed travel times between
all processes. Figure 1 illustrates the data exchange for
this MPI call. Local travel times computed for each do-
main are sent to all other processes. Technically, this en-
tails one MPI_Allgather and one MPI_Allgatherv
call per vehicle type. The initial call serves to share the
actual size of each process’ travel time message since all
processes send travel time updates of varying message size.
As buffers for the received messages must be pre-allocated, it
is necessary to share the message sizes before initiating the
MPI_Allgatherv call. The second call is to share the actual
travel time messages. After that the messages are deserialized.

c) Postprocessing: Afterwards, each process updates the
router with the new travel times. Since the initial travel times
are derived from the speed limit per link, the current travel
times will always be greater or equal. Therefore, in the case
of the A* with landmarks algorithm, the task merely involves
copying the new travel times into the graph’s data structure.

It is important to note that postprocessing takes a fixed
amount of time, regardless of the number of processes, and
must be carried out on each process individually.

11.7
16.5

26.3
32.9

39
47.4

59.5
72.1

87.3
103.3

123.5
151.4

192

108.3

190.2

330.9

616.9

1121.4

2106.1

3957.3
5800.2

7541.3 8570.5 9277.3
7745.3

9970.5

620.5

1156.3

2214.8

3703.8

6243.2
9186.9

12274.8
16801.5 18625.7

23477.3 21905 25097.3

10051.8

10

100

1000

10000

1 10 100 1000
Number of Cores

rtr

Runs a a aberlin−25%−base berlin−25%−dry−router−updates−only berlin−25%−full−routing

Real Time Ratio on Intel® Xeon® Platinum 9242 Processor 

Figure 2: Real time ratios of full run with routing, dry run
without routing but with router updates and base run with no
routing component at all.

IV. EVALUATION

In the following, we investigate the impact of routing on
simulation runtime and evaluate the performance of router
updates. Our performance measurements were conducted on
the HLRN (Norddeutscher Verband für Hoch- und Höchstleis-
tungsrechnen)3 cluster. Each node is equipped with an Intel
Xeon Platinum 9242 @ 2.3 GHz (71.5 MB cache, 48 cores
and 96 threads). The Berlin 25% scenario4 is used, simulating
traffic for 24 hours. Measurements were conducted with 48
processes per node.

Evaluating the traffic state is beyond the scope of this paper.
Studies such as [16] and [17] examine the effect of within-day
replanning on the traffic assignment. Instead, our focus lies on
the technical aspects and the evaluation of their performance
within the distributed prototype.

A. Overall Runtimes

We ran the Berlin scenario with three configurations: one
activating the entire ad-hoc replanning mechanism (full run),
another with router update enabled but without rerouting (dry
run), and a base case with no replanning enabled. We measure
the real-time ratio (RTR), which represents the ratio between
simulated time and the wall clock time required for the simu-
lation. The use of RTR (Real Time Ratio) is based on research
indicating that the runtime tends to saturate at the same level,
determined by hardware latency and implementation, rather
than the size of the simulated scenario. In contrast, the level at
which speed-up saturates depends on the scenario size. Figure
2 shows the RTR of both runs.

During the dry run, we achieve a speedup of 92, while the
full run exhibit a speedup of 16. The best RTR we achieve
are 9970 for the dry run and 192 for the full run. Since the
fastest dry run takes 2.5 times longer than the fastest base run,

3https://www.hlrn.de/doc/display/PUB/Compute+node+partitions
4https://zenodo.org/records/10973034

https://www.hlrn.de/doc/display/PUB/Compute+node+partitions
https://zenodo.org/records/10973034


Figure 3: Maximum wait and routing durations in 30s time
bins for different numbers of processes.

it can be inferred that this difference represents the overhead
factor introduced by router updates. Notably, the curve for
the full run does not decrease, suggesting the potential for
further performance improvements with additional processes.
However, due to limited resources, we can not go any further.

The substantial disparity between dry and full run is primar-
ily attributed to the time-consuming nature of routing itself.

Routing consumes significantly more time than the actual
simulation logic of moving vehicles through the network.
Therefore, the distribution of routing requests strongly influ-
ences the synchronization of processes and is the primary
obstacle to achieving higher speedups for the full run.

In an ideal scenario where routing requests are evenly
distributed, the longer duration of routing compared to other
QSim steps alone would not result in high wait durations.
However, in the worst-case scenario, if only one process
handles all the routing during a time step, every other process
must wait exactly this amount of time. This situation is
depicted in Figure 3.

The figure displays both wait times and routing times. Each
data point corresponds to the maximum duration among all
processes within 30-second time intervals. Specifically, routing
times represent the time taken for a process to complete all
routing tasks of one time step, while wait times indicate the
durations after a process has completed all its work and awaits
update messages from its neighbours. The hourly outliers are
artifacts due to freight agents departing at full hours.

Figure 4 illustrates why wait and routing times in Figure
3 remain relatively constant and do not decrease. Although
we determined that the mean routing duration is 7.3ms,
the maximum routing durations are around 50ms. Since the
maximum routing time is around that value for most time
steps, we cannot expect shorter waiting times – even with
more processes.

B. General Event-Handling Process

Figure 5 illustrates the mean durations of the router update
steps. The preprocessing phase exhibits a substantial reduction

Figure 4: Maximum runtime of a routing call.

Figure 5: Mean durations of the router update process depend-
ing on the number of processes. Transparent bars are for the
dry runs, others for full replanning including routing.

from 42ms with 1 process to 0.08ms with 4096 processes.
This behavior is expected since preprocessing is performed on
the spatial domains, benefiting from smaller spatial domain
sizes. The duration of postprocessing remains constant in
both runs. Since each process handles all the data during
postprocessing, no speedup can be expected.

The most significant difference occurs during communica-
tion, which includes sync time, data exchange, and deserializa-
tion. Our assumption is that long routing times are the cause,
but this requires additional investigation.

C. Implications on Further Architectural Choices

While further investigation is needed, our results already
yield interesting implications. Routing accounts for the ma-
jority of wait times, and must be reduced to achieve higher
runtime speedups.

One possible adjustment is to shorten routing time by using
a faster algorithm, even for the case of longer post-processing
during router updates. Given that these updates occur only
every 900 time steps, this approach seems reasonable.

Alternatively, one could explore better utilization of the
parallel architecture. Since the different routing queries are
mutually independent, the problem is in principle “embarass-
ingly parallel”. The main issue is that the routing requests do



not arrive at the same time but rather sequentially in different
time steps. Two options come to mind:

1) collect routing queries, e.g. by running all routing
queries for departures during the next 900 time steps
immediately after the travel times were updated; or

2) run routing processes in parallel with the execution of
the mobility simulation.

For the second approach, a microservice architecture could be
used, offering the advantages of an asynchronous and non-
blocking implementation. With 15-minute update intervals,
processes could (also here) submit all routing requests at
the beginning of a new interval, allowing the router to re-
order requests by priority. This approach enhances component
isolation. However, it requires more communication and ne-
cessitates load balancing for the router instance. Regarding the
router update itself, the preprocessing implementation scales
effectively and could be employed in such an implementation.

V. CONCLUSION & FUTURE WORK

This study demonstrates the implementation of event pro-
cessing in a distributed mobility simulation, focusing on ad-
hoc routing using MPI. We find that high query times for
routing significantly slow down the simulation. Nevertheless,
utilizing more processes yields speedups for up to 4096
processes.

The global exchange of events is affected by the widely
varying runtimes of the processes. While the preprocessing
phase benefits from workload distribution, global synchro-
nization can be costly, particularly if routing queries exceed
the normal workload of a time step. In future studies, we
intend to assess alternative architectural approaches, such
as microservices, which could facilitate non-blocking event
processing.
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