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The effect of mobility reductions on infection growth is
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1Technische Universität Berlin, FG Verkehrssystemplanung und Verkehrstelematik,
10623 Berlin, Germany

2Zuse Institute Berlin, 14195 Berlin, Germany

Abstract

Stay-at-home orders were introduced in many countries during the COVID-19 pandemic, limiting the
time people spent outside their home and the attendance of gatherings. In this study, we argue from a
theoretical model that in many cases the effect of such stay-at-home orders on incidence growth should
be quadratic, and that this statement should also hold beyond COVID-19. That is, a reduction of the
out-of-home duration to, say, 70% of its original value should reduce incidence growth and thus the
effective R-value to 70% · 70% = 49% of its original value. We then show that this hypothesis can
be substantiated from data acquired during the COVID-19 pandemic by using a multiple regression
model to fit a combination of the quadratic out-of-home duration and temperature to the COVID-19
growth multiplier. We finally demonstrate that many other models, when brought to the same scale,
give similar reductions of the effective R-value, but that none of these models extend plausibly to an
out-of-home duration of zero.

1 Introduction

1.1 Motivation

The COVID-19 pandemic confronted nations worldwide with a serious medical crisis, but also a cascade
of economic, social, and psychological challenges. In this context, many countries implemented non-
pharmaceutical interventions (NPIs, [1]) initially as part of a suppression strategy, but later as part
of a risk mitigation strategy. Throughout the implementation of these NPIs, and particularly in the
aftermath, significant efforts have been made to quantify their effectiveness and their interrelation with
disease indicators, such as the effective R-value and hospitalization numbers.

For example, previous work work by [2] focuses on the first wave of the pandemic to link NPI
introduction dates to national case and death counts. The authors find that school and university
closures are most effective in reducing transmissions. However, their approach cannot distinguish
direct effects on transmission within these institutions from potential indirect effects, such as changes
in public behavior prompted by the signaling effect of school closures. Furthermore, they note that
the disease burden may have been reduced by unobserved NPIs or voluntary behavior (e.g. mask
wearing). Contrarily, in a follow-up study by the same group, [3], a significantly smaller effect size of
the NPIs was observed during the second wave compared to the first. They attribute this decrease
to differences in pre-intervention contact patterns, safety measures, personal protective behaviors, and
the reduced adherence to NPIs. Notably, the impact of school closures was much smaller during the
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second wave, possibly influenced by safety measures and behavioral changes (e.g., symptom screenings,
asymptomatic testing, sanitizing) at schools. The authors speculate that the timing of school closures
during the second wave, as they were now among the later NPIs, may have contributed to a reduced
signaling effect.

Another example is the work by [4] that analyzed NPIs implemented in March-April 2020 across
various countries. The study revealed that canceling small gatherings had the most significant impact
on the effective R-value, followed by closing educational institutions. They find that for the closure
of educational institutions and the cancellation of small gatherings, among many other NPIs, an early
implementation is always more beneficial. The study concludes that NPI effectiveness is influenced
by governance, epidemic stage, socio-economic factors, cultural and political characteristics, and pre-
viously implemented NPIs. Just like in the two aforementioned works, the authors of [4], directly
translate NPIs to disease indicators and do not take into account the population’s time-dependent
adherence.

We, however, inspired by [5–8], believe the population’s compliance to be a paramount intermediate
step when quantifying NPIs’ effectiveness. Consequently, we decompose the effect of government-
mandated NPIs into two steps:

1. Government-introduced NPIs influence the population’s behavior.

2. The population’s behavior influences the (effective) R-value/incidence growth.

In this work, we concentrate on the second step. That is, we do not discuss how strictly the popula-
tion follows government-mandated behavior, and instead investigate how revealed behavior influences
incidence growth. Here, the availability of mobility data from cellphones serves as a valuable proxy for
revealed behavior, thus allowing investigations hitherto impossible. Indeed, many studies have stressed
correlations and plausible causal connections between mobility and incidence growth; see Section 1.2.2
for details. In this paper, we go beyond these in the following way: First, we propose a theoretically
motivated linear-in-parameters regression model, which we test with empirical data. Then, we trans-
late models from related work into our proposed model and show thereby that the effect size we found
is consistent with the literature.

One important outcome of our investigations is that the effect of mobility reductions in many
situations is quadratic. That is, a reduction of the population mobility to, say, 70% of its normal value
leads to a reduction of incidence growth to 70% × 70% = 49% of its original value.

We begin by reviewing the currently existing literature, presenting alternative models and their
results on the impact of mobility on disease spread. In the results section, we first investigate multiple
mobility-only models, settling on the quadratic no-intercept version, before arguing for the inclusion of
a temperature-related variable and deriving our final regression model. We then discuss the implica-
tions of the chosen model, and in particular compare it to other models. Finally, in the methods section
we present an exploratory analysis of the included variables as well as a more detailed description of
the model building process.

1.2 Literature Review

1.2.1 Relationship between COVID-19 and mobility in Germany

Multiple studies investigate the reduction of mobility in Germany related to the COVID-19 pandemic.
None of these studies quantitatively investigates the consequences of these reductions for the infection
dynamics. For more information on these studies, see Supplementary section 5.1.

1.2.2 Relationship between COVID-19 and mobility world-wide

Taking on a global perspective, we discuss studies which quantify the influence of mobility reductions
on the infection dynamics. For the first four models described in the following, we have been able to
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reconstruct the full model. Thus, we present them in more detail and compare them to our model in
Section 4.4.

[9] use mobility data as a proxy measure for social distancing to characterize the relationship
between transmission and mobility for 52 countries during the first year of the pandemic. They split the
year into two country-specific periods, estimating for each period the log of the effective reproduction
number as a function of the log of the basic reproduction number and a mobility indicator. The authors
compute an adjusted R2 of 0.94 for the 1st period (before the change of the relationship occurred) and
an adjusted R2 of 0.45 for the second period (after the change of the relationship occurred).

Considering a similar time frame and using the mobility indicators from the Google mobility re-
ports for 125 countries as well as 52 US states/regions, [10] analyze the correlation between effective
reproduction number and mobility. Using Pearson correlation test and linear modeling, the authors
identify countries for which the correlation between Rt and mobility indicators was either a) negative,
b) positive, or c) more complex than a linear relationship. In case of c), they additionally presented a
quadratic model to improve their results.

[11] uses a fixed-effects model that controls for state-level effects to explore the relationship between
Google mobility data and Rt (considering a 7-day and 14-day lag) on US state level, finding a positive
correlation for retail/recreational activity and public transit, smaller association for shopping at grocery
stores and pharmacies, and negative coefficients for time spent in residential areas.

Concentrating on five public health units (PHU) in the Greater Toronto Area in Canada and with
the help of segmented regression, [12] assess the relationship between the effective R-value Rt and each
Google mobility variable separately. They and find a more pronounced relationship during the first
wave than during the second wave in Canada.

Using mobile phone data from Teralytics, [13] demonstrate how the relative change in mobility (as
a proxy for social distancing) correlates with the rate of new infections in the 25 US counties that had
the highest number of confirmed cases on April 26, 2020. The authors fit a generalized linear model for
each county, using a generalized Covid-19 growth rate, defined as the logarithm of the average number
of new cases over the previous 3 days divided by the logarithm of the average number of new cases
over the previous 7 days. The large divergence between this approach and the methodology proposed
in this paper does not allow for a meaningful comparison, and is therefore omitted from our discussion
in Section 2.5.

Finally, [14], [15], [16], [17], [18], and [19] find correlations between mobility and COVID-19 indi-
cators, but do not present coefficients: [14] present a simple statistical model using mobility data, day
of-week variables, and indicators for changes in testing regimes that allows the generation of a 10-day
forecast for 80 countries. [16] find that travel between US counties decreased by up to 35% during the
first wave, but recovered rapidly during the partial reopening phase, and [15] showed with the help
of an SEIRL (where L stands for isoLated) model that initial lockdowns and mobility suppressed the
first COVID-19 wave in 12 global regions. Focusing on data from the first year of the pandemic, [19]
relate all Google mobility categories apart from “residential” to new daily confirmed cases, finding
that different kinds of community mobility were significant predictors of COVID-19, while [18] relate
population, temperature, mask compliance, and the first principal component of Google’s six mobility
variables to the log of the weekly infection growth rate and identify considerable spatiotemporal vari-
ations. Considering the first Omicron surge in the US, [17] use principal component analysis to relate
Google mobility to COVID-19 case incidences in US counties, finding the coefficient of the “residen-
tial” mobility category to be the second largest in magnitude and the only one that is negative (PCA
coefficient = −0.4571).

1.3 Relating mobility to the growth multiplier

In our previous work [20], we discuss how the reduction of participation has a quadratic effect for
gatherings. Work by [21], which focuses on the special case of in-person work meetings, comes to the
same conclusion: If only a fraction α < 1 of a base turnout is present, then only that fraction α can
bring the infection to the gathering, just as only a fraction α can become infected. In consequence,
the base number of infections is multiplied by α · α = α2 under such circumstances. More precisely,
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for a gathering of N persons, where pcontag denotes the probability to be contagious, pcontag · N is
the expected number of contagious attendees. On the other hand, when pinf denotes the probability
to get infected (conditional on being in the same room with an infected person), then the expected
number of attendees who get infected per contagious person is pinf · (N − pcontag ·N), i.e. the overall
expected number of infected persons is

IfullTurnout = pcontag ·N · pinf · (N − pcontag ·N) .

If the turnout is reduced by multiplying it with a factor α < 1, the expected number of infections is
reduced to

pcontag · αN · pinf · (αN − pcontag · αN) = α2 ·
(
pcontag ·N · pinf · (N − pcontag ·N)

)
= α2 · IfullTurnout .

The effect is quadratic only if all activity types (e.g. leisure, school, work) are reduced equally.
Assume, for example, a situation in which only two out-of-home activities A and B are available,
which have exactly the same characteristics (e.g. contact intensity, room size, indoor/outdoor activity,
duration). Reducing participation at both to 50% yields a reduction of the out-of-home duration by
half and a quadratic reduction of infections to 50% ·50% = 25%. Conversely, completely shutting down
activity A while leaving activity B completely open, only reduces infections by 50%, while still having
the same reduction of the out-of-home duration.

In consequence, both linear and quadratic dependences of the growth multiplier on out-of-home
duration are consistent with theory, making the type of relationship dependent on a country’s handling
of the pandemic. Furthermore, even higher order terms could be possible when the reduction of the
out-of-home duration correlates with other infection-suppressing behaviors such as mask compliance
or deliberately moving gatherings outdoors despite cold weather. In this case, we would observe the
effect of reduced out-of-home duration, multiplied with the additional effects for which out-of-home
duration would be a proxy.

2 Results

In this section, we present our findings on how mobility affects disease spread: Our model comparison
confirms that mobility’s influence in Germany was indeed quadratic. Moreover, including a weather
variable improves the result, but mobility has a stronger influence than weather. Notably, weather
only shows an effect in models that include mobility, underscoring the intricate interplay between these
variables in shaping disease transmission dynamics.

2.1 Mobility vs. weather

The left panel of Figure 1 implies a correlation between out-of-home duration D and the growth
mutiplier, defined as Gt = It+1/It, where I is the incidence of new cases and the index t numbers the
weeks (for details on variables see Section 4.2). In contrast, there is no obvious correlation between
the outdoor fraction and the growth multiplier (Figure 1, right panel), where the outdoor fraction is a
transformation of the temperature taking into account that for very low and very high temperatures
there needs to be saturation of the influence of weather; again see Section 4.2 for details. We thus start
with a model based on the out-of-home duration before introducing the outdoor fraction. Because of
the time lag between exposition to the virus and the reporting of cases, we employ a lead of 2.5 weeks
on the reported case numbers; for details see Methods Sections 4.1 and 4.4.
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Figure 1: Left: growth multiplier G vs. out-of-home duration (in hours) D. Note that a base out-of-home duration of
approximately 8 hours corresponds to a growth multiplier of around 1.5. Right: growth multiplier G vs. outdoor fraction
outFrac. Growth multiplier lags behind out-of-home duration and outdoor fraction by 2.5 weeks.

2.2 Mobility only models

We now compare multiple mobility only models to establish if the influence of mobility on disease
spread is linear, quadratic or cubic:

Gt+2 = β0 + βdDt, (1)

Gt+2 = β0 + βd2D2
t , (2)

Gt+2 = β0 + βd3D3
t , (3)

where D is the out-of-home duration in hours. The coefficients, which are computed using ordinary
least squares, and summary statistics can be found in Table 1: The three models show similar values
for R2, the Akaike Information Criterion (AIC), and the Bayesian Information Criterion (BIC), and
cannot be differentiated on these criteria alone.

Model Adj. AIC BIC Variable Coefficient Std. p > |t|
R2 Error

Linear (1) 0.5207 −16.45 −11.38 Intercept −0.9384 0.3068 0.0041
D 0.2910 0.0442 8.98e− 08

Quadratic (2) 0.5374 −16.82 −11.75 Intercept 0.0105 0.1626 0.949
D2 0.0220 0.0033 7.49e− 08

Cubic (3) 0.527 −16.97 −11.90 Intercept 0.3278 0.1156 0.0073
D3 0.0022 0.0003 6.97e− 08

Quadratic w/o 0.525 −18.82 −15.44 Intercept 0 n/a n/a
intercept (4) D2 0.0022 0.0006 < 2e− 16

Logarithmic (5) 0.589 −27.41 −22.34 Intercept -3.6366 0.4881 6.09e-09
log(D) 1.9064 0.2528 4.61e− 09

Table 1: Regression output for different model types: linear, quadratic, cubic, quadratic without
intercept, and logarithmic. The out-of-home duration D leads by 2.5 weeks.

In this situation, theory, argues for (2): For an out-of-home duration D close to zero, meaning
that persons spend little time outside their own home, we would expect almost no disease spread, or
in other words, a growth multiplier close to zero. According to Table 1, only the quadratic model
has an intercept not significantly different from zero. The underlying reason for models (1) and (3) to
compute an intercept significantly different from zero is that data on out-of-home duration D during
the pandemic in Germany ranges only from 5 to 9 hours per day (see Figure 2). Hence, a linear model
would need to start from an intercept of almost −1 to account for the relatively large slope of the data
points within the observed range. Likewise, a cubic model would necessitate an intercept above zero
to avoid an overly steep slope within the observed range.
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Figure 2: Growth multiplier vs. (average) daily out-of-home duration per person (in hours). Depicted are the regression
lines of the linear (1), quadratic (2), and cubic (3) model.

Estimating the quadratic model (2) without the intercept, after inserting the estimated values
(cf. Table 1), leads to

Gt+2 = 0.022 ·D2
2 . (4)

To further confirm an exponent of 2, we estimate the exponent rather than just testing it for various
integer values. We undertake this with linear regression by log-transforming the equation

Gt+2 = γ0D
γd
t (5)

⇔ log(Gt+2) = log(γ0) + γd log(Dt)

= γ̃0 + γd log(Dt), (6)

where we introduce γ̃0 := log(γ0). The regression output of (6) can be found in Table 1. Translated
back into (5), this means

Gt+2 = 0.0263 ·D1.9064
t . (7)

This is consistent with the quadratic model (4). In consequence, we continue with the quadratic
no-intercept model.

2.3 Models including outdoor fraction

Using mobility alone, we are able to explain more than half of the variance in the growth multiplier.
It is well known that seasonality also influences COVID-19’s infection dynamics [22–24]. There are
multiple mechanisms that may play a role, including that the stability of the virus may depend on
ambient temperature, ambient humidity, or UV radiation, which is higher during summer. In our prior
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research [20], we introduce the concept of an “outdoor fraction” (see Section 4.2 for its derivation).
Here, we explore incorporating the outdoor fraction outFrac in addition to and as a cross term with
mobility into our analysis. This yields

Gt+2 = βd2D2
t + βooutFract + βod2D2

t · outFract. (8)

The regression output is given in Table 2.

Model Adj. AIC BIC Variable Coefficient Std. p > |t|
R2 Error

(8) 0.6345 −25.2865 −18.5310 D2 0.0242 0.0008 < 2e− 16
outFrac 0.0167 0.3976 0.967
D2 · outFrac −0.0053 0.0074 0.478

(9) 0.6345 −27.2846 −22.2180 D2 0.0242 0.0008 < 2e− 16
D2 · outFrac −0.0050 0.0015 0.0017

Table 2: Regression output for different modes including the outdoors fraction. The out-of-home
duration D leads by 2.5 weeks.

Two reasons speak against including the linear term outFrac. The first reason is a statistical one:
Its coefficient is not significant and displays the highest p-value (see Table 2). The second reason is
based on theory: Without mobility, the outdoor fraction has little to no influence on the infection
dynamics. If a primary case is brought into a household, which spends all its time inside, then the
whole household may become infected. But, if the household isolates itself, then no secondary cases
outside the household will occur and the primary case will not influence society’s growth multiplier.
Consequently, outFrac is dropped and we consider the model

Gt+2 = βd2D2
t + βod2D2

t · outFract, (9)

for which Table 2 shows the estimation results, with no discernible loss in explanatory power, improved
AIC and BIC, and now all coefficients significant. With this, the overall mobility effect of 0.022 from
Model (4) is split into a base positive effect of 0.024 and a negative effect of −0.005 stemming from
the interaction of mobility and the outdoor fraction:

Gt+2 = 0.024 ·D2
t − 0.0050 ·D2

t · outFract
= (0.024− 0.0050 · outFract) ·D2

t .
(10)

2.4 Final model

The model (10) is supported by theory, and it also displays the best fit of all models considered so
far. In Section 5.3 (supplementary material), we consider an exhaustive comparison between model
variations with terms up to the third degree, and arrive at the same result. We therefore keep (10) as
our final model and inspect it further in this section.

Figure 3a displays the predicted vs. the observed growth multiplier in different colors for the first
wave, the summer period, and the second wave for the final model (10). From the figure, we infer that
the final model (10) is able to fit the data well. During the first wave, apart from the earliest data
point, the observed as well as the predicted values are smaller than 1 – the reason is that the lagged
growth data starts at the end of March, when the peak of the first wave had almost been reached
(see Figure 6). Then, over the summer, the observed values display strong fluctuations, taking on
values between ∼0.75 and ∼1.35, where our fit predicts values closer to 1. This is consistent with
a low incidence situation, where the “true” value is actually close to one, but random effects cause
strong relative fluctuations. During the second wave, the three largest values are observed (see top-
right corner of the plot) but the model underestimates the infection growth. Figure 3b displays the
observed and the predicted growth rate over time. The plot over time again underlines one shortcoming
of the least squares method: When strong relative fluctuations are encountered (such as during the
summer period), then the linear fit will predict the average over those fluctuations.
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Figure 3: Top: Observed growth multipliers vs. predicted growth multipliers. Bottom: Growth multiplier over the course
of 2020. Dots represent the observed, the line the predicted values.

Overall, our model (10) is supported by theoretical considerations and has a good model fit. It is
plausible that some of the variance that is not explained by our model, especially during the summer
period, is stochastic, and thus cannot be explained by our type of model. A remaining issue are the
three data points in October 2020, where the growth multiplier is larger than predicted by our model
for three consecutive weeks, indicating that there must have been mechanisms in play that are not
captured by our model.

2.5 Comparison of Our Model to Models in the Literature

Our model results may be compared to values from the literature for some but not all of the models
introduced in Section 1.2.2. For some models a comparison is not possible as they report the quality
of the fit but omit information necessary to reconstruct the full model. For other models the slope is
reported, but not the intercept (models by [11] and [12]). In these cases, we use the base R-value of
our model, R0,winter = 1.4, but point out that this limits the comparability. Finally, for some of the
models all necessary coefficients are available, thus allowing comparison to our model (models by [9]
and [10]).
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To compare the influence of mobility reduction across models, we choose the exemplary scenario
in which the out-of-home duration is decreased by 40%. For the detailed comparison to each of the
models [9–12] see Methods Section 4.4. The model comparison yields three findings:

Model [9] [10] [11] [12] Our model (9)

∆R −0.44 −0.42 −0.53 [−0.7,−0.36] [−0.75,−0.6]

Rt at D = 0 0.21 0.1 0.43 −0.35 0

Table 3: Comparison of reduction of the effective R-value ∆R when we assume a reduction of the
out-of-home duration by 40% across models and comparison of the resulting R-values when we assume
an out-of-home duration of 0. [9] provide R0,i = 0.97, allowing us to compute Rt at D = 0. In [10]
a plot of the regression line can be found in the supplementary material. We computed Rt at D = 0
after reading the intercept from the plot and again under the assumption that the average at-home
duration is 16 hours. [11] and [12] do not provide a value for the intercept. Consequently, in these
cases we base the computation of the effective R-value if the out-of-home duration D is equal to zero
(second line) on our R0,winter = 1.4 of (11).

First, all models, including our own, find a reduction of the effective R-value between −0.36 and
−0.75 if the daily out-of-home duration is reduced by 40% or 3.2 hours (see Table 4). This, by itself,
already implies a remarkable consistency across the different locations and models. Figure 4 displays
the five different regression curves, and we note that to fit our data cloud, a linear slope, as used in
the models by [10] and [12], suffices.

Second, we note that when extrapolating the fit to an out-of-home duration of zero, some form of
curvature is necessary to meet the requirement that the R-value is equal to zero when the mobility is
zero. Without curvature, one either needs an intercept significantly below zero (grey line in Figure 4,
or the slope is not steep enough to be consistent with the data points (yellow line in Figure 4; see also
Figure 2). – For the curved models by [9] (green curve) and [11] (brown curve), it is unclear if they
could be adapted such that they both have the correct slope through the data and go through the
origin.

Overall, this implies that these models are valid in the range of values where they are estimated,
but do not extrapolate well beyond that range. In contrast, our quadratic model computes a growth
multiplier (and thus R-value) of zero when the out-of-home duration is zero and thus allows for plausible
extension to the case when the mobility is zero.

Third and last, we point out that the preceeding two arguments are consistent with Section 2.2
and especially Figure 2, in which we already argue for a quadratic relationship between time spent
outside one’s home and the growth multiplier/R-value.

In conclusion, our own model goes beyond the existing models, since we start from a hypothesis
about the underlying mechanism, and from there develop a theory (see Section 2.2). In consequence,
our model is easier to adapt to changing circumstances.
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Figure 4: R-value vs. average daily out-of-home duration per person (in hours). Depicted are our quadratic model (9),
the models by Nouvellet et al. [9], Setti and Tollis [10], Noland [11], and Dainton et al. [12]. For our model, the growth
multiplier was converted to the R-value, while for the models by [9], [10], [11], and [12], the percentage change in mobility
was converted to the absolute out-of-home duration (in hours). For [11] and [12], as no intercept is provided, we used
R0,winter = 1.4 of (11) , which implies that the actual regression lines by [11, 12] are potentially shifts of our depictions.
The red circle marks the origin, through which all models should plausibly go.

2.6 Consequences for Disease Management and Extension to Other Com-
municable Diseases

A quadratic reduction of the number of infections as a consequence of mobility reductions is most
consistent with the data. This is also consistent with the theory developed in Section 1.3, which states
that, if the base turnout at a gathering is reduced to a fraction α < 1, then both the contagious and
susceptible fractions are reduced, leading to a reduction of infections to α · α < α. One question that
arises is if this is related to the disease transmission mechanism. Section 1.3 has already pointed out
that the result would be different if activity types were not reduced equally, but selectively. Similarly,
the result would be different if the number of susceptible persons with which contagious persons interact
would not be reduced – then the reduction factor of α would no longer apply to the susceptibles. For
COVID-19, a possible scenario for this would be a workplace where, for a turnout of α, also a fraction
1− α of the available offices would no longer be used, crowding the remaining employees in only α of
the office space. In that situation, the number of contagious persons would be reduced by α, but the
number of persons each of them encounters would be the same as before. A similar situation exists with
schools: If the turnout for each class is reduced to α = 0.5, then the number of infections is reduced
to 0.5 · 0.5 = 0.25. If, however, a scheme of “alternating classes” is used (as was done in Germany, see
for example [25]), then the situation is similar to the offices above since half of the classrooms are no
longer used, and in the other half of classrooms, the reduced number of contagious persons interacts
with the same number of susceptible persons as without the “alternating classes” intervention.

This line of thinking extends to different transmission mechanisms: For aerosol transmission, to
first order one may assume that every susceptible person in the room obtains the same dose (since
breathed-out aerosols have a tendency to first rise to the ceiling and from there distribute through the
room [26, 27]). For droplet infection, one may assume that only persons in close distance can become
infected – here, only if the number of susceptible persons within close distance is also reduced by α, the
quadratic relationship holds. As a rule of thumb, reducing person densities will lead to the quadratic
reduction, whereas fully shutting down activities while maintaining others at the same person densities
as before will lead to an only linear reduction – and this is expected to be largely independent from
the exact mechanism of disease transmission.
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3 Discussion

Using a multiple linear regression model, we look into how mobility, temperature, and the COVID-19
growth multiplier are related. We find that more than 50% of the variance of the growth multiplier can
be explained by the out-of-home duration alone. Furthermore, for most data sets, including our own,
the elasticity of the growth multiplier with respect to changes of the out-of-home duration is larger
than one. This means that a linear fit of such data points extrapolates, for out-of-home durations of
zero, to negative growth multipliers – which is not plausible. In contrast, a quadratic model fits the
data well, generates a growth multiplier of zero at out-of-home durations of zero, and can be motivated
by theory.

Temperature alone was a worse predictor of the growth multiplier than the out-of-home duration.
Temperature does provide, however, a good correction to the out-of-home duration, leading to a
regression that explains more than 60% of the variance of the growth multiplier.

The growth multiplier follows changes in mobility with a delay of about 2.5 weeks. As there is
only a 5-day period from infection to showing symptoms, this is longer than expected. A plausible
explanation is that the German reporting system added considerable delay.

In this work, we use the growth multiplier G instead of the more well-known effective R-value as
our response variable. This is motivated by the fact that for the effective R-value we would have to use
external estimates (for example, see [28] and [29]), while the growth multiplier can be directly inferred
from the readily available incidence data. We have computed a base growth multiplier of G0 = 1.54,
which translates to a base reproduction value of R0 ≈ 1.4 (see Section 2.5). In the literature, the base
reproduction number R0 for COVID-19 ranges between 1.5 and 3 [30], [31]. Although some authors
argue that these estimations need to be adjusted for the increase in RT-PCR tests [32], our value is on
the lower end of what can be found in the literature. A possible reason for this is that there may be
additional effects, such as people being careful, people wearing masks, etc., which may have remained
in place during summer 2020 even during phases of large mobility.

In general, our proposed linear-in-parameters regression model performs well. Much of the remain-
ing variance not explained by the model can be credited to random fluctuations due to small numbers
during low incidence phase. However, the model has systematic problems in the middle of October
2020: Figures 3a and Figures 3b show that our model underestimates the observed growth multiplier
for three successive weeks in October, that is, mobility and temperature do not suffice to predict the
sharp increase in case numbers. It appears that an additional mechanism, not accounted for by our
model, is at play.

To this end, we explored if school holidays were responsible for the sharp increase. In Ger-
many, the duration and time of school holidays depends on the federal state. In 2020, twelve out of
sixteen federal states closed their schools for two weeks in fall, with Hamburg, Hesse, and Schleswig-
Holstein starting on 05/Oct, Berlin, Brandenburg, Bremen, Lower Saxony, North Rhine-Westphalia,
Rhineland-Palatinate, Saarland starting on 12/Oct, and Saxony and Thurungia on 19/Oct. The re-
maining four states only closed their schools for a single week: Mecklenburg-Vorpommern starting
on 05/Oct, Saxony-Anhalt on 19/Oct and Baden-Württemberg and Bavaria starting on 26/Oct and
2/Nov respectively. Because of the time lag between exposition to the virus and the reporting of cases,
manifested in our time lag of 2.5, even a school closure as early as 5/Oct is too late to explain an
increase of the growth multiplier in the week of 11/Oct. Also, in Germany school holidays typically
led to a reduction of infections – not only because schools were removed as infection contexts, but also
because many parents no longer went to work during school holidays.

Another possible influence might be disease import when returning from vacations. However, the
earliest plausible time people could return in larger numbers is after the first week of school holidays,
i.e. around 12/Oct. Clearly, this is again too late to have an influence on the growth multiplier in the
week of 11/Oct.

Another factor to consider is testing. On 03/November/2020, the testing criteria in Germany were
adapted. In consequence, the number of tests of 1.602.839 in calendar week 45 dropped to 1.390.324 in
calendar week 46, and the German federal health agency RKI states that the testing numbers before
and after the adaptation cannot be directly compared [33]. We acknowledge that this may influence
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our fit for the final weeks of 2020, but because of the time discrepancy reject adapted testing policies
as the reason for the described underfit during the beginning of the fall wave.

We also explored if a sudden temperature drop at the end of August (see Fig. 8) might have
led to people moving their activities indoors despite higher temperatures at the end of September. In
fact, the Google mobility data [34] shows that the visits to parks sharply declined in mid-September
and did not increase again within the study period. In consequence, we modified the outdoor fraction
such that it would never increase during fall 2020 – i.e. once people had decided to move a certain
fraction of activities indoors, they would not be moved outdoors again until the following spring.
However, this did not significantly improve the fit of our model. Overall, we do not want to rule out
that indoors/outdoors behavior might have played a role here. However, neither temperature nor park
usage is sufficient to explain our three sequential outliers in October 2022.

4 Methods

4.1 Time scale and lag

We consider data for the first year of the pandemic, ranging from March 15, 2020 until December
13, 2020. Because the incidence in Germany was fluctuating strongly in February and early March
2020 due to small numbers and issues with the reporting system, February 2020 is excluded. As
the German government announced stricter measures on Dec 13, 2020, which were installed on Dec
16, 2020 [35], the mobility data between December 13 and December 16 was heavily influenced by
this announcement. Furthermore, testing and reporting during Christmas was delayed and unreliable,
leading us to the exclusion of mobility data from December 13, 2020 onwards. Time is given in weeks,
where t = 1 corresponds to “15/Mar/2020” and the maximum t = 40 corresponds to “13/Dec/2020”.
Since the growth rate is defined as Gt = It+1/It (see below), the considered lag effectively is 2 1⁄2
weeks.

4.2 Variables

Our considered response variable is:

• Gt := It+1

It
, the multiplicative growth rate, which describes the change of incidence from one

week to another. Hereby, It is the average 7-day incidence per 100,000 at time t.

The considered explanatory variables are:

• Dt: “Out of home duration”, which serves as a mobility indicator. Denotes in hours how much
time an average person spends daily outside their home during week t.

• Tmaxt: Weekly average of the daily maximum temperature (in Celsius), see Section 4.3.3 for
details.

• Tavgt: Weekly average of the daily average temperature (in Celsius), see Section 4.3.3 for details.

• Precipt: Weekly average of daily total precipitation (in mm).

• outFract: “Outdoor fraction”, a transformation of Tmaxt following the example of [20] and
computed in two steps:

This approach is motivated by the argument that, if the effect of the temperature is mostly
transmitted via the indoors/outdoors behavior, it needs to saturate at the lower end because
eventually all activities are indoors, and at the upper end because eventually all activities are
outdoors. Such a behavior is typically modeled with an S-shaped function such as a logit function.
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Those functions are characterized by a midpoint and a slope at that midpoint. Thus, first, we
introduce a time-dependent midpoint T ⋆

t equal to

T ⋆
t =

{
7.5/30 ∗ t+ 17.5 if t ≤ 30,

25 if t > 30.

In the second step, we then approximate said S-shaped function with a piecewise linear function
with midpoint T ∗

t (as defined above), and slope 0.1:

outFract(Tmaxt) =


0 if Tmaxt < T ⋆

t − 5,
Tmaxt−(T⋆

t −5)
10 if T ⋆

t − 5 ≤ Tmaxt ≤ T ⋆
t + 5

1 if Tmaxt > T ⋆
t + 5,

where Tmaxt denotes the weekly average maximum temperature (in Celsius).
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Figure 5: T ⋆ over the course of 2020.

This approach is motivated by our modelling work in fall 2020, where a higher sensitivity to
sinking temperatures after a warm summer was a plausible explanation for the timing of the
beginning of the second wave [20]. Hence, at t = 1 (corresponding to “15/March/2020”), people
are willing to spend half of their time outside if T ⋆ = 17.5. Over the course of the year, this
threshold linearly increases until it reaches T ⋆ = 25 in the fall at t = 30 (corresponding to
“04/October/2020”).

4.3 Exploratory analysis

4.3.1 Growth multiplier

The top plot of Figure 6 shows the weekly average of the reported 7-day incidence/100,000 as provided
by Robert-Koch-Institut (RKI) [36]. In Germany, the first COVID-19 wave began in calendar week 10
(starting 02/March/2020) and lasted until calendar week 20 (ending on 17/May/2020). It was followed
by a summer period of low infection numbers, before the second wave began on 28/September/2020
[37]. The bottom plot depicts the multiplicative rate by which the COVID-19 case incidence changed
from week to week (see Sec 4.2 for definition).
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Figure 6: Top: 7-day-incidence/100,000 over the course of 2020. Bottom: Growth Multiplier for 2020.

4.3.2 Out Of Home Duration

Figure 7 depicts the amount of time (in hours) an average person spends outside their home per day.
We note that when contact restrictions were introduced (23/March/2020), the out-of-home duration
had already decreased and it reached its minimum in the week of the introduction of the contact
restrictions. The out-of-home duration did not plateau at this minimum and in consequence, an
increase can already be seen before the first NPIs were officially relaxed in calendar week 19/20
(beginning on 04/May/2020 and 11/May/2020 respectively) [38]. During the summer, out-of-home
duration surpassed the pre-pandemic level of early March 2020, which is expected when comparing
summer and early spring duration. Finally, starting in late September we see another decrease in out-
of-home duration. The so-called “lockdown light”, which was introduced on 02/November/2020, lead
to an additional local maximum (potentially due to hasty Christmas-shopping) before the introduction
of more restrictive contact restrictions on 16/December/2020.
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Figure 7: Daily out of home duration per person (in hours) for 2020.
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4.3.3 Outdoor Fraction

The top plot of Fig. 8 depicts the maximum temperature (in C°) over the course of 2020. We first
average over weeks, then over federal states. For the latter, we take the weekly average of the maximum
temperature of every federal state’s capital. We then average over these 16 values, weighting values
according to states’ population shares. Bottom plot: As explained in Section 4.2, we assume that there
exists a season-dependent threshold below (or above) which the share of leisure activities performed
inside (or outside) does not further decrease (or increase). In consequence, the maximum temperature
is transformed to the so-called “share of activities performed outside”, or in short “outdoor fraction”.
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Figure 8: Top: Maximum temperature (in C°). Bottom: Share of leisure activities spent outside.

4.4 Model Comparison

To settle on the final model (9), we employ a multi-step model comparison:

• In the first step, we consider mobility-only models (see Section 2.2 for details), to determine if
the influence of mobility on the growth multiplier was linear, quadratic or cubic.

• Then, we compare the intercept and no-intercept model arguing for the exclusion of the intercept
(again, see Section 2.2).

• In the third step, we compare multiple weather variables: the weekly average of the daily maxi-
mum temperature Tmax, the weekly average of the daily average temperature Tavg, the weekly
average of the daily total precipitation Precip, and the outdoor fraction outFrac. Model out-
puts and detailed discussion of this step can be found in the Suppelementary Material 5.3.

• In the final step, we exclude the linear term for outFrac and only include the interaction term
of out-of-home duration and outFrac (see Section 2.3).
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Figure 9: Multi-step model comparison to determine the final model (9).

4.5 Comparison of Our Model to Models in the Literature

As address in Section 2.5, we compare our model values to values in the literature whenever possible.
This is not possible for the publications that report the quality of the fit but omit information necessary
to reconstruct the full model (see Section 1.2.2). However, the following four papers provide the
necessary coefficients and can thus be compared to our model.

To compare the influence of mobility reduction across models, we choose the following scenario: For
all comparisons, we assume that the out-of-home duration is decreased by 40%. The average German
out-of-home duration is around 8 hours per day (see Figure 10 and Supplementary Section 5.2), leading
to an average at-home duration of about 16 hours per day. Reducing the out-of-home duration by
−40%, or −3.2hrs, to 4.8hrs thus corresponds to increasing the at-home-duration by 20%.

According to (10), our base growth multiplier G0,winter, at D = 8 hours and outFrac = 0, is
1.54. In order to translate the weekly growth multiplier to the R-value, the generation time needs to
be taken into account. Assuming the generation time of SARS-CoV-2 as 5 days [39–41], we obtain

R0,winter = D0,winter
5/7 = 1.545/7 ≈ 1.4 . (11)

Assuming the aforementioned reduced out-of-home time of 8 hrs− 3.2hrs = 4.8hrs, we obtain

Rwinter(−3.2hrs) = (Dwinter(−3.2hrs))5/7 = (0.024 · 4.82)5/7 ≈ 0.555/7 ≈ 0.65 . (12)

The corresponding reduction of the effective R-value thus is

∆Rwinter := Rwinter(−3.2hrs)−R0,winter ≈ 0.65− 1.4 = −0.75 . (13)

The same computation, with outFrac = 1, i.e. “during summer”, leads to ∆Rsummer ≈ −0.6.

Some of the models we compare with are linear, and for these models ∆R can be obtained from the
slope coefficient without having to determine the intercept. In the following, we thus compare with
our ∆R, which is between 0.6 (warm summer) and 0.75 (cold winter).
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Comparison with [9] [9] use

log(Rt,i) = log(R0,i)− βi(1−mt,i), (14)

where mt,i denotes the remaining fraction of mobility compared to a baseline, expressed as a value
between 0 and 1. The remaining mobility fraction mt,i is based on various categories from Google [34]
or Apple [42] mobility data. The percentage changes must then be divided by 100 to obtain mt,i. When
using a combination of google and apple mobility data, the authors obtain βi = 1.51 and R0,i = 0.97
for Germany during the period from late April to late October 2020. Using our introduced example,
namely a reduction of the out-of-home duration of 40% (= 0.4), we obtain

log(RGer) = log(0.97)− 1.51 · 0.4 ≈ −0.634459

⇔ RGer ≈ 0.53

⇔ ∆RGer ≈ 0.53− 0.97 = −0.44 .

This is somewhat smaller, but still consistent with our own range of [−0.75,−0.6].

Comparison with [10] [10] analyze the correlation between effective reproduction number and
mobility. For the “residential” category, this leads to

Rt = β0 + βr · ht−τ , (15)

where Rt denotes the effective reproduction number and ht denotes the percentage change of time spent
at home as introduced above. For a 14-day lag (τ = 14) they compute a coefficient of βr = −0.021
for Germany. Hence, for a 20% increase of the at-home duration, their model computes a reduction
of the effective R-value by −0.021 · 20 = −0.42. Again, this is somewhat smaller, but still consistent
with our own range of [−0.75,−0.6].

Comparison with [11] [11] uses a fixed-effects model that controls for state-level effects to explore
the relationship between Google mobility data and Rt on US state level. For the “residential” category,
the model reads

log(Rt,state) = β0,state + βr · ht−τ + βd · dayst , (16)

where β0,state denotes a state-specific intercept, ht denotes the percentage change of the “residential”
category, and dayst is a trend variable denoting the days since the start of the pandemic in the state.
He obtains βr = −0.0236 and βd = −0.0020 when considering a 14-day lag (τ = 14) between mobility
and the effective R-value. The values of β0,state are not given in the paper; to compare with our
example one can set ht−τ and dayst to zero and then use β0,state = logR0 = log(1.4). For our example
of increasing the at-home-duration, we have ht−τ = 20, and thus

log(Rt) = log(1.4)− 0.0236 · 20 ≈ −0.13553

⇔ Rt ≈ 0.87

⇔ ∆Rt ≈ 0.87− 1.4 = −0.53

Again, this needs to be compared with our range of [−0.75,−0.6].

The trend variable days leads to even smaller reductions over time, but after a year, days = 365
even with ht−τ = 0 leads to an Rt < 1, which is clearly not plausible. Indeed, the model was estimated
against data until June 23rd, 2020, and it is plausible that the trend term, at least in part, rather
captures the seasonal effect.

Comparison with [12] For the “residential” category, [12] obtain the following model:

Rt = β0 + βr · ht−τ ,

where h denotes the percentage change of the “residential” category. For the 14-day lag (τ = 14)
the coefficient differs between the considered five public health units in the Greater Toronto Area and
takes on values between −0.035 and −0.018. Consequently, this leads to a reduction of the R-value
between −0.035 · 20 = −0.7 and −0.018 · 20 = −0.36, which overlaps with our range of [−0.75,−0.6].

17



4.6 Data availability

All data used in this study is publicly available:

• RKI (incidence data): The 7-day incidence/100,000 inhabitants in Germany is provided by the
Robert-Koch-Institut [36].

• Meteostat (temperature data): Meteostat [43] provides weather data on a daily basis, which
served as the basis for Tmax (and consequently outFrac), Tavg and Precip.

• Senozon and TU Berlin (mobility data): The weekly out of home duration is available on Zenodo
[44].

• Google (alternative mobility data source): Usage of Google COVID-19 Community Mobility
reports in the supplementary material [34]. Google stopped reporting new data on October 15,
2022, but all published data is still publicly available.

4.7 Code availability

All code used to produce the results is publicly available on GitHub.
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5 Supplementary material

5.1 Relationship of COVID-19 and mobility in Germany

As noted in Section 1.2.1, multiple studies investigate the reduction of mobility in Germany related to
the COVID-19 pandemic:

Conducting an analysis of movement records from mobile phones, [45] found that lockdown measures
caused substantial and long-lasting structural changes in mobility, noting a heterogeneous spatial
distribution of reductions (increased reduction in large cities compared to less densely populated areas)
and the largest reduction for mid-March 2020. By analyzing the Google mobility data [34] for the
federal state of Saxony until July 2020, [46] found an overall decline in mobility for all commercial
activities and an increase for parks and residential locations. Additionally, using the three mobility
categories (transit, walking driving) of the Apple mobility data [42], [47] found a negative correlation
between mobility and confirmed case numbers in Germany.

Using survey data from the first wave of the COVID-19 pandemic in Germany, [48] found the most
significant mobility reduction for recreational trips followed by work trips. Here, public transit displays
the largest decrease in share, in terms of modal split. [49] carried out a self-assessment survey, noting
that the share of the adult population which had public transport in their mode choice set had dropped
by almost half during the lockdown of spring 2020. Finally, concentrating on the rural population and
using data from interviews and a survey, [50] found that a considerable share of respondents stated to
not have changed their mobility behavior, and that in consequence insights from urban settings cannot
be directly transferred to rural areas.

Returning to the question of mode choice, [49] investigated the car usage in Germany before (spring
2019) and during (spring 2020) the pandemic, finding an effect as overall mileage decreased (magnitude
of decrease depended on household characteristic, age and cubic capacity of the car), but noting that
at the time of writing it was unclear whether or not these changes will turn out to be structural.

Furthermore, [51] computed the change in general mobility behavior at the Germany county level
in January 2021 compared to the same period of the previous year, finding that mobility changes
show significant socioeconomic heterogeneity. Contrarily, analyzing continuous location (provided via
a smartphone app, from beginning of March until mid-May 2020) in combination with demographic
characteristics, [52] found that the German population reduced its mobility in a rather consistent and
uniform way. They found no evidence for statistically significant period-by-subgroup interactions. In
a follow-up research letter, [53] additionally analyzed the reduction in daily distance travelled by an
individual person up until June 2021, again finding that the pattern of relative reduction was similar
in all age groups and in both sexes, with a slightly higher relative mobility in the younger age group
in summer 2020 and the last month of observation.

5.2 Comparison of mobility data sources

In this work, we have used the out-of-home duration by Senozon [44]. Alternative data sources are the
Google COVID-19 Community Mobility Reports. The google mobility reports provide mobility data
for six different categories, including “residential”. Mobility data is presented relative to a baseline
value. For each day of the week, the baseline value is the median value from the 5-week period from
January 3rd until February 6th, 2020. Assuming that an average person in Germany spends around
15.7 hours per day at home [54], the relative numbers for the category “residential” can be converted
to absolute numbers, i.e. the amount of time people spent at home. From the absolute amount of
time spent at home, one can then infer the amount of time people did not spent at home. This is then
comparable to the number we have used above. Please note that when trying to apply our method to
other nations, another assumption for the baseline out-of-home duration might be necessary.
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Figure 10: Daily out of home duration per person (in hours) for 2020. Comparison of Senozon and Google COVID-19
Community Mobility Reports data.

5.3 Model Comparison

Step 1 - Mobility only models

In a first step, we compare multiple mobility only models:

Gt+2 = β0 + βdD
m
t .

Here, the growth multiplier is denoted by Gt = It+1/It, where It is the weekly average incidence, t
indexes the weeks, the out-of-home duration is denoted by Dt, and for which m ∈ {1, 2, 3}. Based
on the arguments detailed in Section 2.2, we decide on the quadratic model (m = 2). For details and
model outputs, see Section 2.2.

Step 2 - Intercept vs. no Intercept

In the second step, we compare the quadratic intercept and no-intercept model:

Gt+2 = β0 + βdD
2
t ,

Gt+2 = βdD
2
t , (17)

Again, the model outputs and our reasoning for continuing with the no-intercept model (17) are
provided in Section 2.2.

Step 3 - Comparison of weather variables

As noted in Section 2.3, the inclusion of the share of activities performed outside (outFrac) instead
of temperature itself, is based on our previous modelling work. To additionally support this variable
transformation, we set up analogous models to (8), but with the weekly average of the daily maximum
temperature Tmax, or the weekly average of the daily average temperature Tavg instead of outFrac.
For Tmax, this model reads

Gt+2 = βd2D2
t + βtempTmaxt + βtempd2D2

t ·Tmaxt
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and creates the output found in the following table:

Variable Coefficient Std. Error p > |t| [95% CI]

D2 0.0268203 0.0019012 < 2e− 16 (0.0230, 0.0307)
Tmax −0.0067756 0.0095029 0.480 (−0.0260, 0.0125)
D2 ·Tmax −0.0001027 0.0001719 0.554 (−0.0005, 0.0002)

Adjusted R2 0.5956
AIC −21.2415
BIC −14.48598

Table 4: Model output, out-of-home duration D and temperature Tmax lead by 2.5 weeks.

Analogously, for Tavg the corresponding model reads

Gt+2 = βd2D2
t + βtempTavgt + βtempd2D2

t ·Tavgt,

which leads to the output found in Table 5.

Variable Coefficient Std. Error p > |t| [95% CI]

D2 2.652e− 02 1.738e− 03 < 2e− 16 (0.0230, 0.0300)
Tavg −1.367e− 02 1.471e− 02 0.359 (−0.0435, 0.0161)
D2 ·Tavg −3.123e− 05 2.551e− 04 0.903 (−0.0005, 0.0005)

Adjusted R2 0.5992
AIC −21.59887
BIC −14.84335

Table 5: Model output, out-of-home duration D and temperature Tavg lead by 2.5 weeks.

For comparison, the model for the outdoor fraction outFrac, which we presented in Section 2.3, reads

Gt+2 = βd2D2
t + βooutFract + βod2D2

t · outFract. (18)

and its result can be found in Table 6.

Variable Coefficient Std. Error p > |t| [95% CI]

D2 0.0242 0.0008 < 2e− 16 (0.0226, 0.0259)
outFrac 0.0167 0.3976 0.967 (−0.7889, 0.8222)
D2 · outFrac −0.0053 0.0074 0.478 (−0.0204, 0.0097)

Adjusted R2 0.6345
AIC −25.2865
BIC −18.5310

Table 6: Model output of (18), out-of-home duration D and outdoor fraction outFrac lead by 2.5
weeks.

Besides temperature (and its transformation outFrac), it is possible that precipitation influences
behavior and therefore, indirectly, the growth multiplier G. We consider a model that includes the
variable precipitation (Precip) and its interaction with the squared out-of-home duration D2. For
Tmax, this model reads

Gt+2 = βd2D2
t + βtempTmaxt + βpPrecip+ βtempd2D2

t ·Tmaxt + βpd2D2
t ·Precipt
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and produces the model output found in Table 7.

Variable Coefficient Std. Error p > |t| [95% CI]

D2 0.0266581 0.0020713 7.84e− 15 (0.0224532100, 0.0308630041)
Tmax 0.0009636 0.0116898 0.935 (−0.0227679034, 0.0246950782)
Precip −0.1612546 0.1498053 0.289 (−0.4653755335, 0.1428662861)
D2 ·Tmax −0.0002581 0.0002195 0.248 (−0.0007037921, 0.0001874938)
D2 ·Precip 0.0032761 0.0028741 0.262 (−0.0025586248, 0.0091107965)

Adjusted R2 0.6111
AIC −18.80341
BIC −8.670129

Table 7: Model output, out-of-home duration D, temperature Tmax, and precipitation Precip lead
by 2.5 weeks.

For Tavg, the corresponding model reads

Gt+2 = βd2D2
t + βtempTavgt + βpPrecip+ βtempd2D2

t ·Tavgt + βpd2D2
t ·Precipt

with the output found in Table 8.

Variable Coefficient Std. Error p > |t| [95% CI]

D2 0.0262721 0.0018416 3.75e− 16 (0.022533560, 0.0300106975)
Tavg −0.0014775 0.0181616 0.936 (−0.038347507, 0.0353925863)
Precip −0.1631482 0.1524124 0.292 (−0.472561924, 0.1462654806)

D2 ·Tavg −0.0002820 0.0003317 0.401 (−0.000955435, 0.0003914227)
D2 ·Precip 0.0034440 0.0029206 0.246 (−0.002485039, 0.0093730891)

Adjusted R2 0.6184
AIC −19.5587
BIC −9.425426

Table 8: Model output, out-of-home duration D, temperature Tavg, and precipitation Precip lead
by 2.5 weeks.

Finally, for the outdoor fraction outFrac, the model reads

Gt+2 = βd2D2
t + βooutFract + βpPrecip+ βod2D2

t · outFract + βpd2D2
t ·Precipt (19)

and its output can be found in Table 9.
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Variable Coefficient Std. Error p > |t| [95% CI]

D2 0.024256 0.001133 < 2e− 16 (0.021955690, 0.026555956)
outFrac 0.201940 0.426215 0.639 (−0.663322464, 1.067201797)
Precip −0.149454 0.122266 0.230 (−0.397667222, 0.098759067)
D2 · outFrac −0.009031 0.008045 0.269 (−0.025363158, 0.007300653)
D2 ·Precip 0.002909 0.002319 0.218 (−0.001799981, 0.007616995)

Adjusted R2 0.6502
AIC −23.05226
BIC −12.91899

Table 9: Model output, out-of-home duration D, outdoor fraction outFrac, and precipitation Precip
lead by 2.5 weeks.

We note that model (19) has the highest adjusted R2 (0.6502), directly followed by model (18) (0.6345).
However, for model (18), both AIC and BIC display lower values. Consequently, we decide to continue
with model (18).

Step 4 - Only considering weather in combination with mobility

In Section 2.3, we highlighted statistically and theoretically motivated reasons for excluding the linear
term outFrac (see Section 2.3 for details). The model from the aforementioned section was

Gt+2 = βd2D2
t + βod2D2

t · outFract

and had the output shown in Table 10.

Variable Coefficient Std. Error p > |t| [95% CI]

D2 0.0242 0.0008 < 2e− 16 (0.0226, 0.0258)

D2 · outFrac −0.0050 0.0015 0.0017 (−0.0081,−0.0020)

Adjusted R2 0.6345
AIC −27.2846
BIC −22.2180

Table 10: Model output for final model, out-of-home duration D and outdoor fraction outFrac lead
by 2.5 weeks.

5.4 Model selection via Best subset selection, Lasso regularization, elastic
net regularization

In Section 2.2 (and in Supplementary material 5.3), theoretical assumptions as well as visual results
(see 1) guided the model selection. Complementary, in this subsection we show that using three dif-
ferent variable selection methods, namely best subset selection, Lasso regularization, and elastic net
regularization, supports our conclusion.

Due to the arguments presented in Section 2.2, we consider the mobility variable D up the degree
three, the outdoor fraction outFrac up to degree three and every combination of them up until
degree 3, leaving us with 9 predictors (D,D2,D3,outFrac,outFrac2,outFrac3,D× outFrac,D2 ×
outFrac,D×outFrac2), and 29 models to choose from. Furthermore, due to the reasoning presented
in Section 2.2, we enforce that the intercept is equal to 0.
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5.4.1 Best subset selection

Best subset selection aims to find a small subset of predictors for a linear model. When performing best
subset selection, a separate least squares regression model must be fit for each possible combination
the predictor variables. For every possible subset size of variables, the best subset selection chooses the
model with the minimal residual sum of squares (RSS). A single best model can then chosen by using
one of the following three statistics: Bayesian Information Criterion (BIC), Mallow’s Cp or adjusted
R2. Here, we consider all three of them, to choose a model which best satisfies our needs. In addition,
we enforce that the maximum number of independent variables is 3.

BIC: Comparing the 29 possible models, the model with the smallest BIC is

Gt+2 = βd2D2 + βd2oD
2 · outFrac.

1.0 1.5 2.0 2.5 3.0

−
14

7
−

14
3

Subset Size

B
IC

Figure 11: BIC for the different subset sizes.

Mallow’s Cp: Among all models, the model with the smallest Cp is the following one:

Gt+2 = βd3D3 + βdoD · outFrac+ βd2oD
2 · outFrac
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Figure 12: Mallow’s Cp for the different subset sizes.

Adjusted R2: And finally, among all 29, the model with the largest adjusted R2 is as follows:

Gt+2 = βd3D3 + βdoD · outFrac+ βd2oD
2 · outFrac
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Figure 13: Adjusted R2 for the different subset sizes. The maximal adjusted R2 is equal to 0.6562 and reached, when
the subset size is equal to 3. However, already when the subset size is equal to 2, we obtain an adjusted R2 of 0.6345.

5.4.2 Lasso regularization

Lasso is a regression method which performs both variable selection and regularization with the aim
of improving interpretability and model accuracy. In our case, Lasso regularization favors the model

Gt+2 = βdD+ βd2D2 + βd3D3 + βo3outFrac
3 + βd2oD

2 · outFrac

5.4.3 Elastic net regularization

Elastic net regularization is a penalized linear regression model combining both L1 and L2 penalties. In
consequence, elastic net regularization can be viewed as a combination of Ridge and Lasso regression.
As the degree of mixing α we chose α = 0.5 and chose the shrinkage parameter using 10-fold cross
validation. The cross validation was performed 100 times, giving us a distribution of λs. Both mean(λ)
and median(λ) favor the model

Gt+2 = βdD+ βd2D2 + βd3D3 + βo3outFrac
3 + βd2oD

2 · outFrac

5.4.4 Conclusion

Summarizing the results of the best subset selection, the lasso regularization and the elastic net regular-
ization above, we observe that the different variable selection methods favor different models. However,
we note that all three methods (as well as the 3 different criteria when applying best subset selection)
select D2 × outFrac as an independent variable and lasso regularization, elastic net regularization as
well as BIC (when applying best subset selection) also include D2. Contrarily, Mallow’s Cp and the
adjusted R2 favor D3 as the mobility-only variable. Furthermore, when deciding based on BIC in best
subset selection, the model Gt+2 = βd3D2 + βd2oD

2 × outFrac is chosen, which is the model we have
already favored in Section 2.3. By Occam’s razor, and as best subset selection is the preferable method
in this case, we decide on Gt+2 = βd2D2 + βd2oD

2 × outFrac as the final model.

5.5 Model diagnostics

In order to assess the adequacy of the final Model (9), several model diagnostics were conducted.
Figure 14 presents a scatter plot of the residuals against the predicted values from the model (top)
as well as a scatter plot of the square root of the absolute value of the standardized residuals against
the predicted values from the model (bottom). According to the assumption of homoscedasticity, we
expect both panels to exhibit a random scatter of points around zero. However, the rightmost portion
of the top panel suggests the presence of heteroscedasticity and a potential non-linear relationship.
To further investigate this, a Breusch-Pagan test was performed, which examines the presence of
heteroscedasticity in the residuals. The test yields a p-value of 0.1479 (> 0.05), indicating a lack of
evidence for heteroscedasticity.
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Figure 14: Top: Residuals vs. predicted values, bottom:
√

|Standardized residuals| vs. predicted values.

Figure 15 (top) shows the model residual quantiles vs. the theoretical quantiles if the residuals were
to follow a normal distribution. A slight deviation can be noticed at the extreme ends, while the
vast majority of the model quantiles aligns well with the theoretical quantiles. Finally, we use Cook’s
distance to detect observations that strongly influence fitted values of the model, which can be seen
in Figure 15. Observations with a Cook’s distance larger than the threshold of 4/n, where n is the
number of observations, are traditionally deemed outliers. With n = 40, three observations pass this
threshold: Observation number 33 (corresponding to 18-October-2020) displays the largest Cook’s dis-
tance (1.436696e− 01), observation 34 (corresponding to 25-October-2020) displays the second largest
Cook’s distance (1.381654e− 01), and observation 32 (corresponding to 11-October-2020) displays the
third-largest cook’s distance (1.092919e− 01).
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Figure 15: Top: Normal Q-Q plot, bottom: Bar plot of Cook’s distance.

Altogether, the model diagnostics as well as Figure 3a and Figure 3b indicate that the model generally
seems appropriate for the relationship that we aim to model, but three outliers at the beginning of
the second wave are not fully explained by the proposed model, which were discussed elaborately in
Section 3.
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