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1 Introduction 

Simulation models are crucial for forecasting traffic flow, evaluating infrastructure changes, 
and optimising traffic operations in transportation planning. Among these models, Multi-Agent 
Transport Simulation (MATSim) is a powerful tool for analysing individual mobility behaviour 
within transportation networks (Horni et al., 2016). The accuracy of MATSim, however, largely 
depends on precise network parameters, especially the free-flow speeds of road segments. 
Free-flow speed represents a vehicle's maximum speed without obstructions such as traffic 
lights or other vehicles. These speeds play a key role in replicating real-world traffic conditions 
and ensuring reliable simulation outcomes for decision-making. 

In practice, factors like road type and traffic density complicate this estimation of free-flow 
speeds. Consequently, free-flow speed correction becomes essential in simulations to 
account for these real-world complexities (Caliper, 2008; PTV AG, 2015). Traffic simulators 
typically adjust free-flow speeds on urban roads where traffic lights exist but are not explicitly 
modelled, simulating more realistic traffic conditions. Adopting machine learning techniques, 
including neural networks, has enhanced the accuracy of traffic model calibration. These 
methods improve travel times and queue length predictions, which are critical for realistic 
traffic simulations (Ištoka Otković et al., 2023). Rakow & Nagel (2024) demonstrated how 
integrating machine learning with microscopic simulations using data from SUMO (Lopez et 
al., 2018) can dynamically adjust free-flow speeds and reduce prediction errors.  

This paper introduces a novel method for adjusting MATSim's free-flow speeds using real-
world travel time data from the Google Distance API (Google Maps Platform, 2022). This 
approach also refines free-flow speed parameters extracted from OpenStreetMap (OSM) data 
(Contributors, 2017), enhancing the realism of network models. This approach bridges the gap 
between simulation parameters and empirical traffic conditions, improving MATSim's 
reliability. By developing an automated algorithm that refines free-flow speeds based on real-
time data, this study contributes a dynamic framework that adapts to changing traffic patterns, 
enhancing traffic management strategies. 

2 Methodology 

This study utilises an existing agent-based MATSim model for the Greater Melbourne Network 
(Jafari et al., 2022), focusing on the Melbourne Inner SA41 area. The network was generated 
using OpenStreetMap (OSM) data as of 3 April 2024, as shown in Figure 1. We calibrated the 
model by extracting 14,670 origin-destination (OD) pairs from previous studies (Tiwari et al., 
2023, 2024), which define the routes requiring calibration. Later, the OD pair samples were 
divided into a random 90/10 and 95/5 percent split, where 90% and 95% OD pairs were used 
to train the model, and the remaining OD pairs were used to test the model. This approach is 
chosen to check for overfitting.  
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Real-world travel times and distances were retrieved using the Google Distance Matrix API 
(Google Maps Platform, 2022), with queries executed during a low-traffic period on 24 April 
2024 at 1:30 AM. This timing ensured that travel times represented free-flow conditions, 
providing a reliable baseline for comparison with simulation results. 

 

Figure 1: Case study map of Melbourne Inner SA4 

 

 

This study employs a two-step approach to calibrate the MATSim network model for the Inner 
Melbourne area, incorporating both manual tuning and automated calibration methods. The 
initial step in our methodology involves manually adjusting the free flow speeds to refine the 
R-squared values compared to actual travel times observed in real-world data. Manual tuning 
aims to establish a more accurate speed parameters baseline, providing a solid starting point 
for subsequent simulations. Following this, an automated calibration algorithm is applied to 
iterate and adapt the speeds to enhance the model's accuracy. 

The automated calibration algorithm adopts an iterative approach. For each iteration, the travel 

time of the OD pairs is first calculated on the network and compared against the data from 

API. A threshold for the discrepancy 𝜖 ∈ (0,1)  is defined. This threshold determines the 

acceptable deviation between the simulated and actual travel times obtained via the API. For 

this study, 𝜖 was set at 0.05. This value was chosen based on preliminary experiments, which 

indicated that it offers an optimal balance between sensitivity and specificity of the calibration. 

If the travel time on the network (𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘) is too fast compared to the travel time on the API 

𝑡𝐴𝑃𝐼 (i.e., 𝑡𝑝,𝑛𝑒𝑡𝑤𝑜𝑟𝑘 < 𝑡𝑝,𝐴𝑃𝐼 ⋅ (1 − 𝜖)) or is too slow compared to the data from the online API 

(i.e., 𝑡𝑛𝑒𝑡𝑤𝑜𝑟𝑘 > 𝑡𝐴𝑃𝐼 ⋅ (1 + 𝜖)), then it is likely that some road segments covered by the path of 

the OD pair on the network are too fast or too slow.  

Going through the OD pairs, we can identify the links that are too fast and too slow, 

respectively. If most of the paths that pass through a specific road segment are too quick on 

the simulation network, then it is likely that the free flow speed of that road segment is too low, 
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and vice versa. For those segments, we should adjust the free flow speed accordingly. For 

this, we define another threshold value for accumulated scores 𝑐 ∈ (0,1), based on which we 

assign each road segment 𝑙 into one of the three sets: 𝐹, likely to be too fast; 𝑆, likely to be 

too slow; 𝑈, undetermined. The logic is shown in Equation 1, where 𝑛𝑙, 𝑓𝑎𝑠𝑡 and 𝑛𝑙, 𝑠𝑙𝑜𝑤  are the 

number of paths that cover the road segment 𝑙 and are too fast or too slow, respectively. 

𝑛𝑙,𝑡𝑜𝑡𝑎𝑙 is the total number of paths that cover road segment 𝑙 . 

𝑙 ∈

{
 
 

 
 𝐹, 𝑖𝑓  

𝑛𝑙,𝑓𝑎𝑠𝑡 − 𝑛𝑙,𝑠𝑙𝑜𝑤

𝑛𝑙,𝑡𝑜𝑡𝑎𝑙
> 𝑐   

𝑆, 𝑖𝑓  
𝑛𝑙,𝑓𝑎𝑠𝑡 − 𝑛𝑙,𝑠𝑙𝑜𝑤

𝑛𝑙,𝑡𝑜𝑡𝑎𝑙
< −𝑐

𝑈, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                           

 (1) 

3 Main findings 

The calibration of free flow speeds using real-world data has significantly enhanced the 
accuracy of the studied network, as evidenced by Figures 2 and 3. Figure 2 shows the 
transformation in travel time validation through manual tuning. Initially, the baseline network, 
prepared from OSM data, shows a broad spread of travel times, indicating a divergence from 
actual traffic conditions, as shown in Figure 2a. Following manual adjustments to the free flow 
speeds, Figure 2b displays a tighter dispersion and a more linear alignment of simulated travel 
times, suggesting that the model's predictions are more reflective of the observed data. 

Figure 2: Observed vs. Simulated Travel Times (in sec) (a) Baseline network; (b) Manually 
tuned network 

 

(a) 
 

(b) 

Figure 3a shows the trend of the Root Mean Squared Error (RMSE) values after the automated 
calibration of the manually calibrated network conducted over 50 iterations. The rapid decline 
in the RMSE values over calibration iterations demonstrates the precision improvements in 
travel time predictions. This rapid improvement stabilises, indicating that the model 
approaches an optimal state where further iterations do not significantly enhance accuracy. 
After completing the 50 iterations, the calibrated network was used to compare the travel time, 
as shown in Figure 3b. The final simulated travel times post-calibration demonstrate a tight 
alignment along a linear path, indicative of a high level of precision in replicating actual travel 
conditions within the network. The iterative improvement of travel times, evidenced by the 
reduction in RMSE and the improved alignment of simulated travel times, confirms the 
potential of the proposed model. 

Table 1 summarises the performance of the MATSim travel times under different calibration 
approaches and data splits, detailing the R-Square, RMSE, Mean Absolute Percentage Error 
(MAPE), and the corresponding regression equations for each scenario. 
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Figure 3: (a) MSE values over different iterations; (b) Observed travel time (in sec) vs 
simulated travel time (in sec) after the automated calibration  

 

(a) 
 

(b) 

Table 1: Performance metrics across calibration scenarios for accuracy estimation 

Scenario Calibration Approach R-Square 
RMSE 

(sec) 

MAPE 

(%) 
Regression Equation 

100% OD 
Pairs 

No Calibration 0.8267 532.6 44.66 y = 1.4842x + 195.33 

Manual Calibration 0.8222 303.18 22.83 y = 0.7093x + 199.16 

Automated Calibration 0.9787 68.34 4.74 y = 0.9877x + 12.605 

90%-10% 
Split 

Manual Calibration 0.8591 251.21 18.19 y = 0.7382x + 202.7 

Automated Calibration 0.9845 73.17 6.19 y = 0.9774x + 25.245 

95%-5% 
Split 

Manual Calibration 0.8324 259.89 18.00 y = 0.7144x + 235.45 

Automated Calibration 0.9760 69.83 5.76 y = 0.9812x + 26.309 

4 Discussion  

Integrating real-world travel data proves crucial for improving traffic models, providing urban 
planners with more reliable tools for scenario planning. This study presents a novel method 
for calibrating free-flow speeds in MATSim using real-time travel data from the Google API, 
significantly improving simulation accuracy. Applied to Inner Melbourne's network, the 
algorithm reduced RMSE values by 60-70% compared to manual tuning and 90% over the 
baseline. Similarly, MAPE values decreased from 20% (manually tuned) and 44% (baseline) 
to 4-5% post-calibration. These results emphasise the effectiveness of the automated 
calibration process in enhancing model precision. 

This approach can be applied to various road networks without extensive data collection, 
making it practical even in areas needing more detailed traffic information. One of the critical 
contributions of this method is its ability to account for traffic-regulating factors, such as traffic 
signals and stop signs, without explicitly modelling each feature. Another benefit of this 
algorithm is that adjusting free-flow speeds based on real-world data simplifies the model while 
maintaining accuracy, significantly reducing computational complexity. The method also 
enhances accessibility, as cities with limited resources can improve their traffic simulations 
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using freely available API data, avoiding costly proprietary systems. This makes the approach 
scalable and feasible for broader urban applications, allowing for better traffic management, 
even in resource-constrained settings. 

However, this study has limitations. The calibration is sensitive to initial free-flow speed 
settings; incorrect estimates can constrain model improvements. Additionally, the current 
linear calibration approach may not fully capture urban traffic complexities, suggesting 
that future research could explore non-linear models or machine learning techniques for 
enhanced calibration. 
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