next up previous contents
Next: About this document ... Up: Multi-agent transportation simulation Previous: Acknowledgments   Contents

Bibliography

1
PhD thesis.

2
T.A. Arentze, F. Hofmann, C.H. Joh, and H.J.P. Timmermans.
Experiences with developing ALBATROSS: A learning-based transportation oriented simulation system.
In Verkehr und Mobilität, number 66 in Stadt Region Land, pages 61-70. Institut für Stadtbauwesen, Technical University, Aachen, Germany, 1998.

3
K.W. Axhausen.
A simultaneous simulation of activity chains.
In P.M. Jones, editor, New Approaches in Dynamic and Activity-based Approaches to Travel Analysis, pages 206-225. Avebury, Aldershot, 1990.

4
A. Babin, M. Florian, L. James-Lefebvre, and H. Spiess.
EMME/2: Interactive graphic method for road and transit planning.
Transportation Research Record, 866: 1-9, 1982.

5
M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama.
Structure stability of congestion in traffic dynamics.
Japan Journal of Industrial and Applied Mathematics, 11(2): 203-223, 1994.

6
M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y. Sugiyama.
Dynamical model of traffic congestion and numerical simulation.
Phys. Rev. E, 51 (2): 1035-1042, 1995.

7
R. Barlovic, L. Santen, A. Schadschneider, and M. Schreckenberg.
Metastable states in CA models for traffic flow.
European Physical Journal B, 5 (3): 793-800, 1998.

8
C. L. Barrett, Personal communication.

9
C. L. Barrett, S. Eubank, K. Nagel, J. Riordan, and M. Wolinsky.
Issues in the representation of traffic using multi-resolution cellular automata.
Los Alamos Unclassified Report (LA-UR) 95-2658, Los Alamos National Laboratory, Los Alamos, NM, U.S.A., see www.lanl.gov, 1995.

10
C. L. Barrett, R. Jacob, and M. V. Marathe.
Formal-language-constrained path problems.
SIAM J COMPUT, 30 (3): 809-837, 2000.

11
C. L. Barrett, M. Wolinsky, and M. W. Olesen.
Emergent local control properties in particle hopping traffic simulations.
In D.E. Wolf, M. Schreckenberg, and A. Bachem, editors, Traffic and granular flow, pages 169-173. World Scientific, Singapore, 1996.

12
R. J. Beckman, K. A. Baggerly, and M. D. McKay.
Creating synthetic base-line populations.
Transportion Research Part A - Policy and Practice, 30 (6): 415-429, 1996.

13
R.J. Beckman et al.
TRANSIMS-Release 1.0 - The Dallas-Fort Worth case study.
Los Alamos Unclassified Report (LA-UR) 97-4502, Los Alamos National Laboratory, Los Alamos, NM, see transims.tsasa.lanl.gov, 1997.

14
M. Ben-Akiva.
Route choice models.
Presented at the Workshop on ``Human Behaviour and Traffic Networks'', Bonn, December 2001.

15
M. Ben-Akiva and S. R. Lerman.
Discrete choice analysis.
The MIT Press, Cambridge, MA, 1985.

16
J.A. Bottom.
Consistent anticipatory route guidance.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2000.

17
J. L. Bowman.
The day activity schedule approach to travel demand analysis.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

18
M. Bradley.
A system of activity-based models for Portland, Oregon, Draft final report, 1997.

19
W. Brilon and N. Wu.
Evaluation of cellular automata for traffic flow simulation on freeway and urban streets.
In W. Brilon, F. Huber, M. Schreckenberg, and H. Wallentowitz, editors, Traffic and Mobility: Simulation - Economics - Environment, pages 163-180. Springer, Berlin, 1998.

20
A. Burriad.
Intersection dynamics in queue models.
Term project report, Swiss Federal Institute of Technology, 2002.
See sim.inf.ethz.ch/papers.

21
B. W. Bush.
Personal communication.

22
G. D. B. Cameron and C. I. D. Duncan.
PARAMICS -- Parallel microscopic simulation of road traffic.
Journal of Supercomputing, 10(1): 25, 1996.

23
C. Cantarella and E. Cascetta.
Dynamic process and equilibrium in transportation network: Towards a unifying theory.
Transportation Science A, 25 (4): 305-329, 1995.

24
E. Cascetta, D. Inaudi, and G. Marquis.
Dynamic estimators of origin-destination matrices using traffic counts.
Transportation Science, 27 (4): 363-373, 1993.

25
E. Cascetta and A. Papola.
An implicit availability/perception random utility model for path choice.
In Proceedings of TRISTAN III, volume 2, San Juan, Puerto Rico, 1998.

26
M.J. Cassidy and J. Han.
Validation and evaluation of freeway simulation models. final report.
Technical Report FHWA/CA/Purdue-RR-95-1, Purdue University, School of Civil Engineering, West Lafayette IN 47907, USA, 1995.

27
I. Chabini.
Discrete dynamic shortest path problems in transportation applications: Complexity and algorithms with optimal run time.
Transportation Research Record, 1645: 170-175, 1998a.

28
I. Chabini.
Discrete dynamic shortest path problems in transportation applications: Complexity and algorithms with optimal run time.
In Transportation Research Record (27), pages 170-175.

29
G.L. Chang, H.S. Mahmassani, and R. Herman.
A macroparticle traffic simulation model to investigate peak-period commuter decision dynamics.
Transportation Research Record, 1005: 107-120, 1985.

30
D. Chowdhury, L. Santen, and A. Schadschneider.
Statistical physics of vehicular traffic and some related systems.
Physics Reports, 329 (4-6): 199-329, May 2000.

31
D. Chowdhury, L. Santen, A. Schadschneider, S. Sinha, and A. Pasupathy.
Spatio-temporal organization of vehicles in a cellular automata model of traffic with 'slow-to-start' rule.
J. Physics A: Math. General, 32: 3229, 1999.

32
S. Clarke, A. Krikorian, and J. Rausen.
Computing the $n$ best loopless paths in a network.
J. Soc. Indust. Appl. Math., 11 (4): 1096-1102, December 1963.

33
M. Cremer and M. Papageorgiou.
Parameter identification for a traffic flow model.
Automatica, 17 (6): 837-843, 1981.

34
M. Cremer and H. Schütt.
A comprehensive concept for simultaneous state observation, parameter estimation, and incident detection.
In Proceedings of the 11th Int. Symposium on Transportation and Traffic Theory, Yokohama, Japan, 1990.

35
Carlos F. Daganzo, M. J. Cassidy, and R. L. Bertini.
Possible explanations of phase transitions in highway traffic.
Transportation Research A, 33: 365-379, 1999.

36
R.W. Denney, J.C. Williams, S.C.S. Bhat, and S.A. Ardekani.
Calibrating NETSIM for a CBD using the two fluid model.
In Large Urban Systems. Proceedings of the Advanced Traffic Management Conference. Federal Highway Administration, 400 7th Street SW, Washington DC, USA, 1993.

37
S. T. Doherty and K. W. Axhausen.
The developement of a unified modelling framework for the household activity-travel scheduling process.
In Verkehr und Mobilität, number 66 in Stadt Region Land. Institut für Stadtbauwesen, Technical University, Aachen, Germany, 1998.

38
Th. A. Domencich and D. McFadden.
Urban travel demand.
In D.W. Jorgenson and J. Waelbroeck, editors, Urban travel demand, number 93 in Contributions to Economic Analysis. North-Holland and American Elsevier, 1975.

39
J.J. Dongarra, I.S. Duff, D.C. Sorensen, and H.A. van der Vorst.
Numerical linear algebra for high-performance computers.
Software, Environments, and Tools. SIAM Society for Industrial and Applied Mathematics, Philadelphia, 1998.

40
DYNAMIT.
See its.mit.edu and dynamictrafficassignment.org, accessed 2003.

41
DYNASMART.
See www.dynasmart.com and dynamictrafficassignment.org, accessed 2003.

42
J. Esser.
Simulation von Stadtverkehr auf der Basis zellularer Automaten.
PhD thesis, University of Duisburg, Germany, 1998a.

43
J. Esser.
Simulation von Stadtverkehr auf der Basis zellularer Automaten.
PhD thesis, University of Duisburg, Germany, 1998b.
See also www.traffic.uni-duisburg.de.

44
J. Esser and K. Nagel.
Census-based travel demand generation for transportation simulations.
In W. Brilon, F. Huber, M. Schreckenberg, and H. Wallentowitz, editors, Traffic and Mobility: Simulation - Economics - Environment, pages 135-148, Berlin, 1998. Springer.

45
U. Frisch, B. Hasslacher, and Y. Pomeau.
Lattice-gas automata for navier-stokes equation.
Phys. Rev. Letters, 56: 1505, 1986.

46
C. Gawron.
An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model.
International Journal of Modern Physics C, 9 (3): 393-407, 1998a.

47
C. Gawron.
An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model.
International Journal of Modern Physics C, 9 (3): 393-407, 1998b.

48
D. L. Gerlough and M. J. Huber.
Traffic Flow Theory.
Special Report No. 165. Transportation Research Board, National Research Council, Washington, D.C., 1975.

49
P. G. Gipps.
A behavioural car-following model for computer simulation.
Transportation Research B, 15: 105-111, 1981.

50
P. G. Gipps.
A model for the structure of lane-changing decisions.
Transportation Research B, 20B (5): 403-414, 1986.

51
C. Gloor.
Modelling of autonomous agents in a realistic road network (in German).
Diplomarbeit, Swiss Federal Institute of Technology ETH, Zürich, Switzerland, 2001.

52
R. Haberman.
Mathematical models in mechanical vibrations, population dynamics, and traffic flow.
Prentice-Hall, Englewood Cliffs, NJ, 1977.

53
D. Helbing.
Verkehrsdynamik.
Springer, Heidelberg, Germany, 1997.

54
R. Herman and I. Prigogine.
A two-fluid approach to town traffic.
Science, 204: 148-151, 1979.

55
J. Hofbauer and K. Sigmund.
Evolutionary games and replicator dynamics.
Cambridge University Press, 1998.

56
J.D. Holland.
Adaptation in Natural and Artificial Systems.
Bradford Books, 1992.
Reprint edition.

57
R. R. Jacob, M. V. Marathe, and K. Nagel.
A computational study of routing algorithms for realistic transportation networks.
ACM Journal of Experimental Algorithms, 4 (1999es, Article No. 6), 1999.

58
A. Jakobs and R.W. Gerling.
Scaling aspects for the performance of parallel algorithms.
Parallel Computing, 19 (9): 1063-1073, 1993.

59
D. Jost and K. Nagel.
Probabilistic traffic flow breakdown in stochastic car following models.
Paper 03-4266, Transportation Research Board Annual Meeting, Washington, D.C., 2003.
Shorter version to be published in Transportation Research Records.

60
T. Kelly.
Driver strategy and traffic system performance.
Physica A, 235: 407, 1997.

61
B. S. Kerner.
Traffic flow: Experiment and theory.
In D.E. Wolf and M. Schreckenberg, editors, Traffic and granular flow'97, pages 239-267. Springer, Berlin, 1998.

62
B. S. Kerner and P. Konhäuser.
Structure and parameters of clusters in traffic flow.
Phys. Rev. E, 50 (1): 54-83, 1994.

63
B. S. Kerner and H. Rehborn.
Experimental features and characteristics of traffic jams.
Phys. Rev. E, 53 (2): R1297-R1300, 1996a.

64
B. S. Kerner and H. Rehborn.
Experimental properties of complexity in traffic flow.
Phys. Rev. E, 53 (5): R4275-R4278, 1996b.

65
J.H. Kim.
Special issue about the first micro-robot world cup soccer tournament, MIROSOT.
Robotics and Autonomous Systems, 21 (2): 137-205, 1997.

66
S. Krauß.
Microscopic modeling of traffic flow: Investigation of collision free vehicle dynamics.
PhD thesis, University of Cologne, Germany, 1997.
See www.zaik.uni-koeln.de/~paper.

67
S. Krauß, K. Nagel, and P. Wagner.
The mechanism of flow breakdown in traffic flow models.
Technical report, 1998.

68
S. Krauß, P. Wagner, and C. Gawron.
Metastable states in a microscopic model of traffic.
Phys. Rev. E, 55 (5): 5597-5602, 1997.

69
R.D. Kühne and R. Beckschulte.
Non-linearity stochastics of unstable traffic flow.
In C.F. Daganzo, editor, Proc. 12th Int. Symposium on Theory of Traffic Flow and Transportation, page 367. Elsevier, Amsterdam, The Netherlands, 1993.

70
M. J. Lighthill and J. B. Whitham.
On kinematic waves. I: Flow movement in long rivers. II: A Theory of traffic flow on long crowded roads.
Proceedings of the Royal Society A, 229: 281-345, 1955.

71
D. Lohse.
Verkehrsplanung, volume 2 of Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung.
Verlag für Bauwesen, Berlin, 1997.

72
H.S. Mahmassani, J.C. Williams, and R. Herman.
Performance of urban traffic networks.
In N.H. Gartner and N.H.M. Wilson, editors, Transportation and Traffic Theory, page 1. Elsevier Science Publishing Co., Inc., 1987.

73
A.D. May.
Traffic flow fundamentals.
Prentice Hall, Englewood Cliffs, NJ, 1990.

74
P. Metaxatos, D. Boyce, M. Florian, and I. Constantin.
Implementing combined model of origin-destination and route choice in EMME/2 system.
Transportation Research Records, 1493: 57-63, 1995.

75
MITSIM, 1999.
Massachusetts Institute of Technology, Cambridge, Massachusetts. See its.mit.edu.

76
MPI www page.
www-unix.mcs.anl.gov/mpi/, accessed 2003.
MPI: Message Passing Interface.

77
K. Nagel.
Freeway traffic, cellular automata, and some (self-organizing) criticality.
In R.A. de Groot and J. Nadrchal, editors, Physics Computing '92, page 419, Prague, 1992. World Scientific.

78
K. Nagel.
Particle hopping models and traffic flow theory.
Phys. Rev. E, 53 (5): 4655-4672, 1996.

79
K. Nagel.
From particle hopping models to traffic flow theory.
Transportation Research Records, 1644: 1-9, 1999.

80
K. Nagel and C.L. Barrett.
Using microsimulation feedback for trip adaptation for realistic traffic in Dallas.
International Journal of Modern Physics C, 8 (3): 505-526, 1997.

81
K. Nagel and H. J. Herrmann.
Deterministic models for traffic jams.
Physica A, 199: 254, 1993.

82
K. Nagel and M. Paczuski.
Emergent traffic jams.
Phys. Rev. E, 51: 2909-2918, 1995.

83
K. Nagel and S. Rasmussen.
Traffic at the edge of chaos.
In R. A. Brooks and P. Maes, editors, Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pages 222-235. MIT Press, Cambridge, MA, 1994a.

84
K. Nagel and S. Rasmussen.
Traffic at the edge of chaos.
In R. A. Brooks and P. Maes, editors, Artificial Life IV: Proceedings of the Fourth International Workshop on the Synthesis and Simulation of Living Systems, pages 222-235. MIT Press, Cambridge, MA, 1994b.

85
K. Nagel, M. Rickert, P. M. Simon, and M. Pieck.
The dynamics of iterated transportation simulations.
See www.arXiv.org, nlin.AO/0002040, 2000.
Earlier version in: Proceedings of 3rd TRIannual Symposium on Transportation ANalysis (TRISTAN-III) 1998 in San Juan, Puerto Rico.

86
K. Nagel and A. Schleicher.
Microscopic traffic modeling on parallel high performance computers.
Parallel Computing, 20: 125-146, 1994.

87
K. Nagel and M. Schreckenberg.
A cellular automaton model for freeway traffic.
Journal de Physique I France, 2: 2221-2229, 1992.

88
K. Nagel, P. Stretz, M. Pieck, S. Leckey, R. Donnelly, and C. L. Barrett.
TRANSIMS traffic flow characteristics.
Los Alamos Unclassified Report (LA-UR) 97-3530, Los Alamos National Laboratory, Los Alamos, NM, see transims.tsasa.lanl.gov, 1997.

89
K. Nagel, P. Wagner, and R. Woesler.
Still flowing: Approaches to traffic flow and traffic jam modeling.
Operations Research, 51 (5): 681-710, 2003.

90
K. Nagel, D.E. Wolf, P. Wagner, and P. M. Simon.
Two-lane traffic rules for cellular automata: A systematic approach.
Phys. Rev. E, 58 (2): 1425-1437, 1998.

91
W. Niedringhaus, J. Opper, L. Rhodes, and B. Hughes.
IVHS traffic modeling using parallel computing: Performance results.
In Proceedings of the International Conference on Parallel Processing, pages 688-693. IEEE, 1994.

92
J. de D. Ortúzar and L.G. Willumsen.
Modelling transport.
Wiley, Chichester, 1995.

93
R. Palmer.
Broken ergodicity.
In D. L. Stein, editor, Lectures in the Sciences of Complexity, volume I of Santa Fe Institute Studies in the Sciences of Complexity, pages 275-300. Addison-Wesley, Redwood City, CA, 1989.

94
D. Park and L. R. Rilett.
Identifying multiple and reasonable paths in transportation networks: A heuristic approach.
Transportation Research Records, 1607: 31-37, 1997.

95
Michael Patriksson.
The Traffic Assignment Problem: Models and Methods.
Topics in Transportation. VSP, Zeist, The Netherlands, 1994.

96
A. Perko.
Implementation of algorithms for $k$ shortest loopless paths.
Networks, 16: 149-160, 1986.

97
M. Ponzlet and P. Wagner.
Validation of a CA-model for traffic simulation of the Northrhine-Westphalia motorway network.
In The 24th European Transport Forum, Proceedings, volume P404-1, 1996.

98
PVM www page.
www.epm.ornl.gov/pvm/, accessed 2003.
PVM: Parallel Virtual Machine.

99
H. A. Rakha and M. W. Van Aerde.
Comparison of simulation modules of TRANSYT and INTEGRATION models.
Transportation Research Record, 1566: 1-7, 1996.

100
M. Rickert.
Traffic simulation on distributed memory computers.
PhD thesis, University of Cologne, Cologne, Germany, 1998.
available via www.zaik.uni-koeln.de/~paper.

101
M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour.
Two lane traffic simulations using cellular automata.
Physica A, 231 (4): 534-550, 1996a.

102
M. Rickert, K. Nagel, M. Schreckenberg, and A. Latour.
Two lane traffic simulations using cellular automata.
Physica A, 231: 534, 1996b.

103
J.D. Rothwell.
Control of Human Voluntary Movement.
Chapman and Hall, 1994.

104
G. Sauermann and H.J. Herrmann.
A 1d traffic model with threshold parameters.
In D.E. Wolf and M. Schreckenberg, editors, Traffic and granular flow'97, pages 481-486. Springer, Berlin, 1998.

105
A. Schadschneider.
Analytical approaches to cellular automata for traffic flow: Approximations and exact solutions.
In D.E. Wolf and M. Schreckenberg, editors, Traffic and granular flow'97, pages 417-432. Springer, Berlin, 1998.

106
A. Schadschneider and M. Schreckenberg.
Cellular automaton models and traffic flow.
J. Physics A: Math. General, 26: L679, 1993.

107
T. Schwerdtfeger.
Makroskopisches Simulationsmodell für Schnellstraßennetze mit Berücksichtigung von Einzelfahrzeugen (DYNEMO).
PhD thesis, University of Karsruhe, Germany, 1987.

108
Y. Sheffi.
Urban transportation networks: Equilibrium analysis with mathematical programming methods.
Prentice-Hall, Englewood Cliffs, NJ, USA, 1985.

109
P. M. Simon and K. Nagel.
Simple queueing model applied to the city of Portland.
International Journal of Modern Physics C, 10 (5): 941-960, 1999.

110
U. Sparmann.
Spurwechselvorgänge auf zweispurigen BAB-Richtungsfahrbahnen.
Number 263 in Forschung Straßenbau und Straß enverkehrstechnik. Bundesminister für Verkehr, Bonn-Bad Godesberg, Germany, 1978.

111
D. Sternad.
personal communication.

112
TRANSIMS www page.
TRansportation ANalysis and SIMulation System.
transims.tsasa.lanl.gov, accessed 2003.
Los Alamos National Laboratory, Los Alamos, NM.

113
Transportation Research Board.
Highway Capacity Manual.
In Special Report No. 209, Transportation Research Board (114), 3rd edition, 1994a.

114
Transportation Research Board.
Highway Capacity Manual.
Special Report No. 209. National Research Council, Washington, DC, 3rd edition, 1994b.

115
H. Unger.
An approach using neural networks for the control of the behaviour of autonomous individuals.
In A. Tentner, editor, High Performance Computing 1998, pages 98-103. The Society for Computer Simulation International, 1998.

116
H. Unger.
Modellierung des Verhaltens autonomer Verkehrsteilnehmer in einer variablen staedtischen Umgebung.
PhD thesis, TU Berlin, 2002.

117
M. Van Aerde, personal communication.

118
M. Van Aerde, B. Hellinga, M. Baker, and H. Rakha.
INTEGRATION: An overview of traffic simulation features.
1996.
A paper accepted for presentation at the 1996 Transportation Research Board Annual meeting.

119
J. Van Leeuwen, editor.
Formal models and semantics, volume B of Handbook of Theoretical Computer Science, 1990. Elsevier and MIT Press.

120
VISSIM www page.
www.ptv.de, accessed 2003.
Planung Transport und Verkehr (PTV) GmbH.

121
P. Wagner.
Traffic simulations using cellular automata: Comparison with reality.
In D E Wolf, M.Schreckenberg, and A.Bachem, editors, Traffic and Granular Flow. World Scientific, Singapore, 1996.

122
P. Wagner and K. Nagel.
Microscopic modeling of travel demand: Approaching the home-to-work problem.
Paper 990919, Transportation Research Board Annual Meeting, Washington, D.C., 1999.

123
P. Wagner, K. Nagel, and D.E. Wolf.
Realistic multi-lane traffic rules for cellular automata.
Physica A, 234: 687, 1997.

124
S. Weinmann.
Simulation of spatial learning mechanisms.
PhD thesis, Swiss Federal Institute of Technology ETH, Zürich, Switzerland, in preparation.

125
R. Wiedemann.
Simulation des Straßenverkehrsflusses.
Schriftenreihe Heft 8, Institute for Transportation Science, University of Karlsruhe, Germany, 1994.

126
R. Wiedemann.
Beschreibung des Staus.
In H. Keller, editor, Beiträge zur Theorie des Straßenverkehrs. Forschungsgesellschaft für Straßen- und Verkehrswesen, Köln, Germany, 1995.

127
D.E. Wolf.
Cellular automata for traffic simulations.
Physica A, 263: 438-451, 1999.

128
S. Wolfram.
Theory and Applications of Cellular Automata.
World Scientific, Singapore, 1986.

129
www-users.cs.umn.edu/ $\!$karypis/metis/.
METIS library, accessed 2003.

130
Yin Y. Yen.
Finding the $k$ shortest loopless paths in a network.
Management Science, 17 (11): 712-716, July 1971.

131
S. Yukawa and M. Kikuchi.
Coupled-map modeling of one-dimensional traffic flow.
Journal of the Physical Society of Japan, 64 (1): 35-38, 1995.



2004-02-02