next up previous
Next: About this document ... Up: An Improved Framework for Previous: Acknowledgments

Bibliography

1
T. Arentze, F. Hofman, H. van Mourik, and H. Timmermans.
ALBATROSS: A multi-agent rule-based model of activity pattern decisions.
Paper 22, Transportation Research Board Annual Meeting, Washington, D.C., 2000.

2
R. Arnott, A. De Palma, and R. Lindsey.
A structural model of peak-period congestion: A traffic bottleneck with elastic demand.
The American Economic Review, 83 (1): 161, 1993.

3
V. Astarita, K. Er-Rafia, M. Florian, M. Mahut, and S. Velan.
A comparison of three methods for dynamic network loading.
Transportation Research Record, 1771: 179-190, 2001.

4
R. J. Beckman, K. A. Baggerly, and M. D. McKay.
Creating synthetic base-line populations.
Transportion Research Part A - Policy and Practice, 30 (6): 415-429, 1996.

5
M. Ben-Akiva and S. R. Lerman.
Discrete choice analysis.
The MIT Press, Cambridge, MA, 1985.

6
J.A. Bottom.
Consistent anticipatory route guidance.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 2000.

7
J. L. Bowman.
The day activity schedule approach to travel demand analysis.
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1998.

8
J.L. Bowman, M. Bradley, Y. Shiftan, T.K. Lawton, and M. Ben-Akiva.
Demonstration of an activity-based model for Portland.
In World Transport Research: Selected Proceedings of the 8th World Conference on Transport Research 1998, volume 3, pages 171-184. Elsevier, Oxford, 1999.

9
N. Cetin and K. Nagel.
A large-scale agent-based traffic microsimulation based on queue model.
In Proceedings of Swiss Transport Research Conference (STRC), Monte Verita, CH, 2003. See www.strc.ch.
Earlier version, with inferior performance values: Transportation Research Board Annual Meeting 2003 paper number 03-4272.

10
D. Charypar and K. Nagel.
Generating complete all-day activity plans with genetic algorithms.
In IATBR'03 IATBR'03 (22).

11
C.F. Daganzo.
Queue spillovers in transportation networks with a route choice.
Transportation Science, 32 (1): 3-11, 1998.

12
A. de Palma and F. Marchal.
Real case applications of the fully dynamic METROPOLIS tool-box: an advocacy for large-scale mesoscopic transportation systems.
Networks and Spatial Economics, 2(4): 347-369, 2002.

13
DYNAMIT www page.
See its.mit.edu and dynamictrafficassignment.org, accessed 2003.

14
DYNASMART www page.
See www.dynasmart.com and dynamictrafficassignment.org, accessed 2003.

15
J. Ferber.
Multi-agent systems. An Introduction to distributed artificial intelligence.
Addison-Wesley, 1999.

16
M. Friedrich, I. Hofsäß, K. Nökel, and P. Vortisch.
A dynamic traffic assignment method for planning and telematic applications.
In Proceedings of Seminar K, European Transport Conference, Cambridge, GB, 2000.

17
C. Gawron.
An iterative algorithm to determine the dynamic user equilibrium in a traffic simulation model.
International Journal of Modern Physics C, 9 (3): 393-407, 1998a.

18
C. Gawron.
Simulation-based traffic assignment.
PhD thesis, University of Cologne, Cologne, Germany, 1998b.
available via www.zaik.uni-koeln.de/~paper.

19
D. Hensher and J. King.
In D. Hensher and J. King, editors, The Leading Edge of Travel Behavior Research. Pergamon, Oxford, 2001.

20
J.D. Holland.
Adaptation in Natural and Artificial Systems.
Bradford Books, 1992.
Reprint edition.

21
J.D. Hunt, R. Johnston, J.E. Abraham, C.J. Rodier, G.R. Garry, S.H. Putman, and T. de la Barra.
Comparisons from sacramento model test bed.
Transportation Research Record, 1780: 53-63, 2001.

22
IATBR'03.
Proceedings of the meeting of the International Association for Travel Behavior Research (IATBR), Lucerne, Switzerland, 2003. See http://www.ivt.baum.ethz.ch/allgemein/iatbr2003.html.

23
R. R. Jacob, M. V. Marathe, and K. Nagel.
A computational study of routing algorithms for realistic transportation networks.
ACM Journal of Experimental Algorithms, 4 (1999es, Article No. 6), 1999.

24
J. Jonnalagadda, N. Freedman, W.A. Davidson, and J.D. Hunt.
Development of microsimulation activity-based model for San Francisco: destination and mode choice models.
Transportation Research Record, 1777: 25-35, 2001.

25
David E. Kaufman, Karl E. Wunderlich, and Robert L. Smith.
An iterative routing/assignment method for anticipatory real-time route guidance.
Technical Report IVHS Technical Report 91-02, University of Michigan Department of Industrial and Operations Engineering, Ann Arbor MI 48109, May 1991.

26
J.H. Kim.
Special issue about the first micro-robot world cup soccer tournament, MIROSOT.
Robotics and Autonomous Systems, 21 (2): 137-205, 1997.

27
W.R. Loudon, J. Parameswaran, and B. Gardner.
Incorporating feedback in travel forecasting.
Transportation Research Record, 1607: 185-195, 1997.

28
K. Nagel.
High-speed microsimulations of traffic flow.
PhD thesis, University of Cologne, 1994/95.
See www.inf.ethz.ch/~nagel/papers or www.zaik.uni-koeln.de/~paper.

29
K. Nagel.
Individual adaption in a path-based simulation of the freeway network of Northrhine-Westfalia.
International Journal of Modern Physics C, 7 (6): 883, 1996.

30
K. Nagel and F. Marchal.
Computational methods for multi-agent simulations of travel behavior.
In IATBR'03 IATBR'03 (22).

31
B. Raney, M. Balmer, K. Axhausen, and K. Nagel.
Agent-based activities planning for an iterative traffic simulation of Switzerland.
In IATBR'03 IATBR'03 (22).

32
B. Raney and K. Nagel.
Iterative route planning for large-scale modular transportation simulations.
Future Generation Computer Systems, in press.
See sim.inf.ethz.ch/papers.

33
P.A. Salvini and E.J. Miller.
ILUTE: An operational prototype of a comprehensive microsimulation model of urban systems.
In IATBR'03 IATBR'03 (22).

34
A. Schneider.
Genetische Algorithmen zur Optimierung von Tagesplänen für Verkehrsteilnehmer.
Term project, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 2003.
See www.sim.inf.ethz.ch/papers.

35
TRANSIMS www page.
TRansportation ANalysis and SIMulation System.
transims.tsasa.lanl.gov, accessed 2004.
Los Alamos National Laboratory, Los Alamos, NM.

36
URBANSIM www page.
URBANSIM.
See www.urbansim.org, accessed 2003.

37
K.M. Vaughn, P. Speckman, and E.I. Pas.
Generating household activity-travel patterns (HATPs) for synthetic populations, 1997.

38
P. Vovsha, E. Petersen, and R. Donnelly.
Microsimulation in travel demand modeling: lessons learned from the New York best practice model.
Transportation Research Record, 1805: 68-77, 2002.

39
J. Wahle, A.L.C. Bazzan, F. Klügl, and M. Schreckenberg.
The impact of real-time information in a two-route scenario using agent-based simulation.
Transportation Research C, 10 (5-6): 399-417, 2002.



2004-05-09